Results of experiments investigating the influence of the amplitude, the growth rate, and the repetition rate of the exciting electric field pulses on the electron current and charge density emitted from ferroelectrics are reported. The behavior of two types of lead-lanthanum-zirconium-titanate (PLZT) ceramics, 2/95/5 and 8/65/35, was studied. The temporal shift between the applied HV pulses and the emitted electron current pulses was different for the two materials. Regular electron emission was observed at repetition rates of up to 2 MHz in the PLZT-2/95/5 material, showing that the recovery of the emitting sample back to the original state may happen in less than a microsecond.
Un-prepoled Lead Zirconate Titanate Lanthanum doped-PLZT ferroelectric cathodes have emitted intense current pulses under the action of a high voltage pulse of typically 8 kV/cm for PLZT of 8/65/35 composition and 25 kV/cm for PLZT of 4/95/5 composition. In the experiments described in this paper, the exciting electric field applied to the sample is directed from the rear surface towards the emitting surface. The resulting emission is due to an initial field emission from the metal of the grid deposited over the emitting surface with the consequent plasma formation and the switching of ferroelectric domains. These electrons may be emitted directly from the crystal or from the plasma. This emission requires the material in ferroelectric phase. In fact, PLZT cathodes of the 8/65/35 type, that is with high Titanium content, showing ferroelectric-paraelectric phase sequence, emit at room temperature, while PLZT cathodes of the 4/95/5 type, that is with low Titanium content, having antiferro-ferro-paraelectric phase sequence, emit strongly at a temperature higher than 130°C.
Spontaneous electrical polarization of ferroelectric materials can be changed either by reversal or by phase transition from a ferroelectric into a non-polar state or vice versa. If spontaneous polarization changes are induced at a submicrosecond time-scale, strong uncompensated surface charge densities and related fields are generated, which may lead to the intense self-emission of electrons from the negatively-charged free surface areas of the ferroelectric cathode. The nature of this self-emission differs essentially from other methods of ferroelectric electron emission and from conventional electron emission in that the latter methods are only achieved by extracting electrons with externally applied electric fields. When electron guns are constructed with ferroelectric cathodes, new design criteria have to be taken into account. The intensity, the energy, the temporal and spatial distribution and the repetition rate of the emitted electron beams can be adjusted within wide limits. The advantages of ferroelectric cathodes and the technological difficulties arising during their production, preparation, and operation are identified and discussed and solutions to the problems are proposed. Experiences with a few applications of ferroelectric electron emission are reported and suggestions for further applications are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.