Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
BackgroundObesity was identified as a major risk factor for malignant diseases, but underlying mechanisms remain unclear. Natural killer (NK) cells, a pivotal aspect of innate immunity, are capable of identifying and killing virally infected and tumor cells. Previous studies have shown altered NK cell functions in obesity, and the current study aimed to investigate the relationship between altered NK cell functions and increased cancer risk in obesity.MethodsTo induce obesity male F344-rats received a high-fat diet (34% fat) or a control diet (4% fat). Thereafter, syngeneic mammary adenocarcinoma cells (MADB106) or a vehicle were intravenously (i.v.) injected. 15 min after injection, half of each group of rats were killed, lungs removed and immunohistochemically stained. Numbers of NK cells, MADB106 cells and NK cell-tumor cell interactions were quantified. Twenty-one days after tumor-cell injection the other half group of rats was killed and lung metastases were counted and relative mRNA concentrations of different NK cell receptors were determined.ResultsAfter short-term MADB106-challenge, DIO fed animals showed significantly decreased NK cell numbers in the blood and NK cell-tumor cell interactions in the lung as compared to their control littermates. Twenty-one days after MADB106 injection, the lungs of the DIO fed rats showed significantly more lung metastases compared to control animals, accompanied by reduced relative mRNA concentrations of the activating NK cell receptor NKG2D.ConclusionsWe conclude that induction of obesity in F344-rats leads to reduced lung NK cell function against tumor cells and results in significantly enhanced lung metastasis as compared to lean animals. It can be hypothesized that obesity-induced altered NK cell functions play an important role in cancer growth and metastasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s40608-017-0161-5) contains supplementary material, which is available to authorized users.
Anteroposterior X-ray views of both acromioclavicular (AC) joints with 10-kg weights held in each hand are the generally accepted procedure for diagnosis of Tossy I-III grades of AC joint separation. An analogous diagnosis can be made by standardized ultrasound examination. Ten individuals with Tossy-I, 11 with Tossy-II and 8 with Tossy-III instability were examined both radiographically and by B-mode ultrasound. The degree of AC joint separation was uniformly determined on the basis of a calculated index (AC Index = AC joint width of uninjured side/AC joint width of injured side). The mean AC Index for Tossy-I instability determined by ultrasound was 1.0; mean indices of 0.49 and 0.5 were determined for Tossy-II injury by ultrasound and X-ray, respectively, and of 0.21 and 0.2, respectively, for Tossy-III instability. Statistical analysis showed significant differences between the mean AC indices of all three groups (P < 0.0001). We conclude that the reliability of ultrasound examination of AC joint instability is equal to that of radiographic measurement. Standard X-rays of the shoulder remain mandatory only to exclude fracture. The indication for operative stabilization of the AC joint can be established on the basis of the grade of AC joint instability measured by the side-effect-free and cost-effective method of ultrasound examination (AC Index < 0.3 equivalent to Tossy-III instability).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.