[1] We studied the low-temperature properties of sodium and magnesium perchlorate solutions as potential liquid brines at the Phoenix landing site. We determined their theoretical eutectic values to be 236 ± 1 K for 52 wt% sodium perchlorate and 206 ± 1 K for 44.0 wt% magnesium perchlorate. Evaporation rates of solutions at various concentrations were measured under martian conditions, and range from 0.07 to 0.49 mm h À1 for NaClO 4 and from 0.06 to 0.29 mm h À1 for Mg(ClO 4 ) 2 . The extrapolation to Phoenix landing site conditions using our theoretical treatment shows that perchlorates are liquid during the summer for at least part of the day, and exhibit very low evaporation rates. Moreover, magnesium perchlorate eutectic solutions are thermodynamically stable over vapour and ice during a few hours a day. We conclude that liquid brines may be present and even stable for short periods of time at the Phoenix landing site.
[1] Chlorate (ClO 3 À ) is an intermediate oxidation species between chloride (Cl À ) and perchlorate (ClO 4 À ), both of which were found at the landing site by the Wet Chemistry Lab (WCL). The chlorate ion is almost as stable as perchlorate, and appears to be associated with perchlorate in most terrestrial reservoirs (e.g. Atacama and Antarctica). It is possible that chlorate contributed to the ion sensor response on the WCL, yet was masked by the strong perchlorate signal. However, very little is known about chlorate salts and their effect on the stability of water. We performed evaporation rate experiments in our Mars simulation chamber, which enabled us to determine the activity of water for various concentrations. From this we constructed solubility diagrams for NaClO 3 , KClO 3 , Mg(ClO 3 ) 2 and Ca(ClO 3 ) 2 , and determined the Pitzer parameters for each salt. Chlorate salt eutectic temperatures range from 270 K (KClO 3 ) to 204 K (Mg(ClO 3 ) 2 ). Modeling the addition of chlorate to the initial WCL solutions shows that it precipitates in concentrations comparable to other common salts, such as gypsum and epsomite, and implies that chlorates may play an important role in the wet chemistry on Mars. Citation: Hanley, J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.