Adiponectin and visfatin are newly discovered adipokines that are strongly expressed in human visceral adipose tissue. To identify new regulatory mechanisms in fat, the effect of TNF-alpha (TNF) on adiponectin, on its two receptors, and on visfatin was investigated by incubating human visceral adipose tissue from patients without diabetes mellitus with TNF for 24, 48 and 72 hours. The mRNA expression of visfatin, adiponectin, and its two receptors, as well as the protein expression of adiponectin were determined. A decrease of adiponectin mRNA expression of 97% after incubation with TNF (5.75 nmol/l) for 24 hours, a decrease of 91% after 48 hours, and a decrease of 96% after 72 hours were measured. The reduction of protein expression was measured to be 42% after 24 hours, 28% after 48 hours, and 39% after 72 hours of incubation with TNF (5.75 nmol/l). The mRNA level of adiponectin receptor 1 (AdipoR1) was elevated about 72% after 48 hours of incubation and 67% after 72 hours of incubation, whereas the mRNA expression of adiponectin receptor 2 (AdipoR2) was not altered significantly. The visfatin mRNA level was found to be highly increased by 255% after 24 hours and 335% after 48 hours and 341% after 72 hours of incubation with TNF (5.75 nmol/l). Our results support the concept of visceral adipose tissue as an endocrine organ. We demonstrate that TNF has regulatory functions on adiponectin, AdipoR1 and on visfatin in human visceral adipose tissue. TNF levels are elevated in states of obesity and insulin resistance. Due to this fact TNF could be the reason that there is a decrease in the level of adiponectin, whereas there is an increase in the level of visfatin in states of obesity and insulin resistance.
The aim of the study was to investigate if the endocannabinoid system (ECS) is activated in visceral adipose tissue and if adipose tissue inflammation affects the ECS activation state. Therefore, expression of fatty acid amide hydrolase (FAAH), cannabinoid receptor 1 (Cb1), adiponectin, and tumor necrosis factor (TNF)-alpha was compared in visceral adipose tissue from 10 normal-weight (BMI 24.4+/-1.1 kg/m2) and 11 obese subjects (BMI 37.6+/-13.6 kg/m2) using quantitative RT-PCR, and gene expression changes were analyzed after in vitro stimulation of visceral adipose tissue with TNF-alpha. The data demonstrate that the ECS is activated in obese visceral adipose tissue as shown by decreased FAAH, Cb1, and adiponectin expression. Obesity-related ECS activation is accompanied by elevated expression of the pro-inflammatory cytokine TNF-alpha, which in turn stimulates ECS activation in vitro. Our data show a strong association between adipose tissue inflammation and ECS activation in obesity, and indicate that a pro-inflammatory state may directly activate the ECS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.