Aims. This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe i 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO 3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit.
We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data.
In March 2003, a field validation campaign was conducted on the sea ice near Barrow, AK. The goal of this campaign was to produce an extensive dataset of sea ice thickness and snow properties (depth and stratigraphy) against which remote sensing products collected by aircraft and satellite could be compared. Chief among these were products from the Polarimetric Scanning Radiometer (PSR) flown aboard a NASA P-3B aircraft and the Aqua Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). The data were collected in four field areas: three on the coastal sea ice near Barrow, AK, and the fourth out on the open ice pack 175 km northeast of Barrow. The snow depth ranged from 9.4-20.8 cm in coastal areas (n = 9881 for three areas) with the thinnest snow on ice that had formed late in the winter. Out in the main pack ice, the snow was 20.6 cm deep (n = 1906). The ice in all four areas ranged from 138-219 cm thick (n = 1952), with the lower value again where the ice had formed late in the winter. Snow layer and grain characteristics observed in 118 snow pits indicated that 44% of observed snow layers were depth hoar; 46% were wind slab. Snow and ice measurements were keyed to photomosaics produced from low-altitude vertical aerial photographs. Using these, and a distinctive three-way relationship between ice roughness, snow surface characteristics, and snow depth, strip maps of snow depth, each about 2 km wide, were produced bracketing the traverse lines. These maps contain an unprecedented level of snow depth detail against which to compare remote sensing products. The maps are used in other papers in this special issue to examine the retrieval of snow properties from the PSR and AMSR-E sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.