Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K-and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV, facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + ( s s p 1 2 2 S 2 6 2 1 2 ) level, for example, requires cooperative interaction of at least four electrons.
Double photoionization accompanied by loss of n C atoms (n = 0, 2, 4, 6) was investigated by merging beams of Xe@C + 60 ions and synchrotron radiation and measuring the yields of product ions. The giant 4d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6.2 ± 1.4 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C + 60 molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry.
Abstract.The photon-ion merged-beams technique has been employed at the new PhotonIon spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe Absolute cross sections for 3d photoionization of Xe q+ ions (1 ≤ q ≤ 5) 2
Single, double, and triple ionization of C(1+) ions by single photons is investigated in the energy range of 286-326 eV, i.e., in the range from the lowest-energy K-vacancy resonances to well beyond the K-shell ionization threshold. Clear signatures of C(1+)(1s2s(2)2p(2) (2)D,(2)P) resonances are found in the triple-ionization channel. The only possible mechanism producing C(4+)(1s(2)) via these resonances is direct triple-Auger decay, i.e., a four-electron process with simultaneous emission of three electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.