Heart rate variability (HRV) represents one of the most promising markers of the autonomic nervous system (ANS) regulation. However, it requires the acquisition of the ECG signal in order to reliably detect the RR intervals, which is not always easily and comfortably available in personal health applications. Additionally, due to progress in single spot optical sensors, photoplethysmography (PPG) is an interesting alternative for heartbeat interval measurements, since it is a more convenient and a less intrusive measurement technique. Driven by the technological advances in such sensors, wrist-worn devices are becoming a commodity, and the interest in the assessment of HRV indexes from the PPG analysis (pulse rate variability - PRV) is rising. In this study, we investigate the hypothesis of using PRV features as surrogates for HRV indexes, in three different contexts: healthy subjects at rest, healthy subjects after physical exercise and subjects with cardiovascular diseases (CVD). Additionally, we also evaluate which are the characteristic points better suited for PRV analysis in these contexts, i.e. the PPG waveform characteristic points leading to the PRV features that present the best estimates of HRV (correlation and error analysis). The achieved results suggest that the PRV can be often used as an alternative for HRV analysis in healthy subjects, with significant correlations above 82%, for both time and frequency features. Contrarily, in the post-exercise and CVD subjects, time and (most importantly) frequency domain features shall be used with caution (mean correlations ranging from 68% to 88%).
Monitoring of cardiovascular function on a beat-to-beat basis is fundamental for protecting patients in different settings including emergency medicine and interventional cardiology, but still faces technical challenges and several limitations. In the present study, we propose a new method for the extraction of cardiovascular performance surrogates from analysis of the photoplethysmographic (PPG) signal alone.We propose using a multi-Gaussian (MG) model consisting of five Gaussian functions to decompose the PPG pulses into its main physiological components. From the analysis of these components, we aim to extract estimators of the left ventricular ejection time, blood pressure and vascular tone changes. Using a multi-derivative analysis of the components related with the systolic ejection, we investigate which are the characteristic points that best define the left ventricular ejection time (LVET). Six LVET estimates were compared with the echocardiographic LVET in a database comprising 68 healthy and cardiovascular diseased volunteers. The best LVET estimate achieved a low absolute error (15.41 ± 13.66 ms), and a high correlation (ρ = 0.78) with the echocardiographic reference.To assess the potential use of the temporal and morphological characteristics of the proposed MG model components as surrogates for blood pressure and vascular tone, six parameters have been investigated: the stiffness index (SI), the T1_d and T1_2 (defined as the time span between the MG model forward and reflected waves), the reflection index (RI), the R1_d and the R1_2 (defined as their amplitude ratio). Their association to reference values of blood pressure and total peripheral resistance was investigated in 43 volunteers exhibiting hemodynamic instability. A good correlation was found between the majority of the extracted and reference parameters, with an exception to R1_2 (amplitude ratio between the main forward wave and the first reflection wave), which correlated low with all the reference parameters. The highest correlation ([Formula: see text] = 0.45) was found between T1_2 and the total peripheral resistance index (TPRI); while in the patients that experienced syncope, the highest agreement ([Formula: see text] = 0.57) was found between SI and systolic blood pressure (SBP) and mean blood pressure (MBP).In conclusion, the presented method for the extraction of surrogates of cardiovascular performance might improve patient monitoring and warrants further investigation.
There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
A new unsupervised and low complexity method for detection of S1 and S2 components of heart sound without the ECG reference is described The most reliable and invariant feature applied in current state-of-the-art of unsupervised heart sound segmentation algorithms is implicitly or explicitly the S1-S2 interval regularity. However; this criterion is inherently prone to noise influence and does not appropriately tackle the heart sound segmentation of arrhythmic cases. A solution based upon a high frequency marker; which is extracted from heart sound using the fast wavelet decomposition, is proposed in order to estimate instantaneous heart rate. This marker is physiologically motivated by the accentuated pressure differences found across heart valves, both in native and prosthetic valves, which leads to distinct high frequency signatures of the valve closing sounds. The algorithm has been validated with heart sound samples collected from patients with mechanical and bio prosthetic heart valve implants in different locations, as well as with patients with native valves. This approach exhibits high sensitivity and specificity without being dependent on the valve type nor their implant position. Further more, it exhibits invariance with respect to normal sinus rhythm (NSR) arrhythmias and sound recording location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.