A micromachined thermal emitter for fast transient temperature operation with a novel hot-plate concept is presented. This concept is based on a nonaxis-symmetric design with excellent mechanical properties during temperature modulation combined with high thermal decoupling. Especially, the mechanical stress induced by the thermal expansion of the hot-plate and their suspension was improved. This results in a reduced sensitivity for buckling of the hot-plate. The thermal emitter is fabricated using silicon on insulator (SOI) technology and KOH-etching. Different suspension structures were realized and mechanical and thermal characterizations were performed. Besides the realization of the new hot-plate suspension design, a high thermal emission at wavelengths 5 m has been achieved using ceramic coatings for emissivity enhancement. This kind of emission tuning owns-in contrast to the typical surface and bulk structuring methods-the possibility to act simultaneously as a heater passivation.
Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.