Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and Lig,htSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce mass and life-cycle costs for a mission to acquire SAR data for Earth science and civilian applications and to establish commercial utility. LightSAR is sponsored by NASA and industry partners. The use of IFSAR to measure elevation is one of the most powerful and practical applications of radar. A properly equipped spaceborne IFSAR system can produce a highly accurate global digital elevation map, including cloud-covered areas, in significantly less time and at significantly lower cost than other systems. For accurate topography over a large area, the interferomehic measurements can be performed sitnultaneously in physically separate receive systems. The Spaceborne Imaging Radar C (SIR-C), successfully flown twice in 1994 aboard the Space Shuttle Endeavour, offers a unique opportunity for global multifrequency elevation mapping by the year 2000. The addition of a C-band receive antenna of approximately 60 m length, extended from the Shuttle bay on a mast, and operating in concert with the existing SIR-C antenn~produces an interferometric pair. It is estimated that the 90 percent linear absolute elevation error achievable is less that 16 meters for elevation postings of 30 meters. The SRTM will be the first single-pass spaceborne IFSAR instrument and will produce a near-global high-resolution digital topography data set. Since LightSAR offers important benefits to both the science community and U.S. industry, an innovative government-industry teaming approach is being explored, with industry sharing the cost of developing LightSAR in return for commercial rights to its data and operational responsibility. LightSAR will enable mapping of surface change. The instrument's high-resolution mapping, along with its quad pohuization, dual polarization, interfkrometric and ScanSAR modes will enable continuous monitoring of natural hazards, Earth's surface deformation, surface vegetation change, and ocean mesoscale features to provide commercially viable and scientifically valuable data products. Advanced microelectronics and lightweight materials will increase LightSAR's functionality without increasing the mass. Dual frequency L/X-band designs have been examined.
Sea surface temperature (SST) is measured from space by the advanced very high resolution radiometer (AVHRR), scanning multichannel microwave radiometer (SMMR), high resolution infrared sounder (HIRS) and VISSR atmospheric sounder (VAS). Typical accuracies have been reported from 0.5°C regionally to 2.0°C on a global basis. To evaluate the accuracy of the satellite‐derived sea surface, temperatures, a series of three workshops was organized to provide uniform data reduction and analysis. The analytical techniques used to intercompare satellite and in situ measurements are described in detail. Selected results showed the overall average rms errors were in the range 0.5°–1.0°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.