Abstract. This study compares the CO 2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO 2 (NEE) at both sites has been investigated for 2 years (July 2010-June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m −2 a −1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (−53 ± 28 and −73 ± 38 g C m −2 a −1 ). The strong net CO 2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that overcompensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO 2 uptake of the drained spruce forest, the site is a strong net CO 2 source when the whole lifecycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha −1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but stable carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.
Abstract. This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-alpine region of southern Germany. The sites are separated by only ten kilometers, they share the same formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for two years (July 2010 to June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m−2 a−1 in the first and second year respectively) than the natural bog forest at Schechenfilz (−53 ± 28 and −73±38 g C m−2 a−1). The strong net CO2 uptake can be explained by the high gross primary productivity of the spruces that over-compensates the two times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger LAI of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source, if the whole life-cycle, since forest planting is considered. We determined the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. The estimate resulted in a strong carbon release of +156 t C ha−1 within the last 44 yr, means the spruces would need to grow for another 100 yr, at the current rate, to compensate the peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but consistent carbon sink for decades, which our results suggest is very robust regarding short-term changes of environmental factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.