Zinc bismuth vanadate glasses with compositions 50V2O5-xBi2O3-(50-x) ZnO have been prepared using a conventional melt-quenching method and the solubility limit of Bi2O3 in zinc vanadate glass system has been investigated using x-ray diffraction. Density has been measured using Archimedes’ principle; molar volume (Vm) and crystalline volumes (Vc) have also been estimated. With an increase in Bi2O3 content, there is an increase in density and molar volume of the glass samples. The glass transition temperature (Tg) and Hurby coefficient (Kgl) have been determined using differential scanning calorimetry (DSC) and are observed to increase with increase in Bi2O3 content (i.e., x), up to x = 15, thereby indicating the structural modifications and increased thermal stability of zinc vanadate glasses on addition of Bi2O3. FTIR spectra have been recorded and the analysis of FTIR shows that the structure depends upon the Bi2O3 content in the glass compositions. On addition of Bi2O3 into the zinc vanadate system, the structure of V2O5 changes from VO4 tetrahedral to VO5 trigonal bi-pyramid configuration. The optical parameters have been calculated by using spectroscopic ellipsometry for bulk oxide glasses (perhaps used first time for bulk glasses) and optical bandgap energy is found to increase with increase in Bi2O3 content.
Large-scale zinc oxide (ZnO) nanotetrapods have been grown on p-type Si (111) substrate by oxidizing zinc pieces in air by thermal evaporation technique without the presence of any catalyst. The size and morphology of the nanostructures was found to depend on experimental parameters. The grown nanostructures were characterized by X-ray Diffraction (XRD), Photoluminescence (PL), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and analysis of elemental composition was done by Energy Dispersive X-ray analysis (EDX). The EDX spectrum shows that the grown product contains Zn and O only. The X-ray diffraction pattern indicates that the microstructure of the obtained products is typical hexagonal wurtzite ZnO. The optical properties were studied using room temperature PL spectroscopy which indicates that the products are of high optical quality and the near band edge UV transition peak intensity increases with decrease in tetrapod size.
Zinc bismuth silicate glasses with compositions 40SiO 2 · xZnO · (60 − x)Bi 2 O 3 (x = 0, 5, 10, 15, 20, 25, 30, 35, and 40) have been prepared by conventional melt-quench technique and the solubility limit of zinc in bismuth silicate glass system has been estimated using X-ray diffraction technique. Density has been measured using Archimedes' principle; with increase in ZnO in the samples, the molar volume and density are found to decrease. The glass transition temperature (T g ) has been determined by using differential scanning calorimetry (DSC) and is observed to increase with increase in ZnO content. Raman and FTIR spectra have been recorded at room temperature and the analysis of Raman and FTIR shows that in all the glass compositions, asymmetric and symmetric stretched vibrations of Si-O bonds in SiO 4 tetrahedral units exist and with decrease in Bi 2 O 3 , the contribution of symmetric vibrations begins to dominate which results in increased compactness of the glass structure.
The superheated emulsion (bubble) detectors have been developed at Defence Laboratory, Jodhpur (DLJ), India, for measurement of gamma doses. The developed detectors have been tested at Radiation Safety and System Division (RSSD), Bhabha Atomic Research Center (BARC), Mumbai (India) and DLJ having ISO-17025 accredited facility for testing and calibration of Radiation Monitors. A series of experiments were conducted to determine the gamma and neutron sensitivity of these detectors, i.e. batch homogeneity, reproducibility, dose equivalent rate effect, gamma/neutron dose equivalent response, gamma/neutron energy response and change in gamma sensitivity as a function of temperature. All the results were within +/- 20% of themselves. It is observed that the response of the detector is dependent upon temperature. The recommended ideal working temperature range of the detector is 20-28 degrees C, but a temperature correction is required beyond approximately 30 masculineC. The temperature compensation may be possible up to 45 degrees C in improved version using specially prepared reversible thermo-sensitive polymer gel. The detector may have applications in radio-diagnosis, R&D laboratories, and health physics as well as an indicator of gamma radiation for dirty bomb to be useful for first responder in any radiological emergency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.