The mechanisms of liver injury from cold storage and reperfusion are not completely understood. The aim of the present study was to investigate: 1) whether the inactivation of Kupffer cells (KCs) by gadolinium chloride (GadCl) modulates cold ischemia-reperfusion injury of rat liver; and 2) whether cold storage of rat liver involves injury to biliary epithelial cells (BECs). Hepatobiliary function was assessed using an isolated perfused rat liver model. Compared with control livers, in livers subjected to cold storage at 4 degrees C in Euro-Collins solution (EC) for 18 hours or in University of Wisconsin solution (UW) for 48 hours, portal flow was lower and resistance significantly higher, taurocholate (TC) and bromosulfophthalein (BSP) elimination were markedly impaired, bile flow was reduced, and lactate dehydrogenase (LDH) leakage into the perfusate was increased. Pretreatment of rats with GadCl, a selective KC toxicant, abrogated disturbances of the microcirculation in both models, but it did not influence viability and functional parameters of the liver. Most of the parameters studied in livers stored in UW solution for 18 hours were not significantly different from those found in control livers. As to biliary activity of gamma-glutamyl transferase (GGT), as an index of BEC integrity, it was increased with increasing time of cold storage. The reabsorption of glucose from the bile decreased with longer storage time. The results suggest the following: 1) that cold ischemia-reperfusion injury of rat liver is mediated by KC-dependent (hepatic microcirculation) and -independent (parenchymal cell function) mechanisms; and 2) that cold storage of rat liver induces functional impairment of BECs.
Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.