The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.
Oral squamous cell carcinoma (OSCC) has a dismal 50% five-year survival rate, emphasizing the need to develop reliable and sensitive tools for early diagnosis. In this study we evaluated the performance of 7 previously identified, potential mRNA biomarkers of OSCC in saliva samples of Hungarian patients. Expression of the putative OSCC biomarkers (DUSP1, OAZ1, H3F3A, IL1B, IL8, SAT and S100P), 2 biomarkers of inflammation (IL6 and TNFα) and 8 putative normalizing genes was quantified from each sample using real-time quantitative PCR. In contrast with previous studies, the expression pattern of the 7 mRNA biomarkers was similar between OSCC patients and age-matched control patients in the Hungarian patient population. On the other hand, 5 of the 7 mRNA biomarkers were present at significantly higher levels in saliva samples of OSCC patients when compared to young control patients. The best biomarker combination could distinguish only the OSCC vs. young control patients, but not the OSCC vs. age-matched control patients. In conclusion, the significant differences between our results and previous studies, and the clinical characteristics of the patients suggest that inflammatory processes in the oral cavity may affect the performance of the 7 putative salivary mRNA biomarkers. Lastly, since IL6 mRNA was quantifiable in the majority of OSCC cases, but only in a few control samples, salivary IL6 mRNA may be utilized as part of a biomarker combination to detect OSCC.
Salivary IL-6 mRNA was previously identified as a promising biomarker of oral squamous cell carcinoma (OSCC). We performed a multi-center investigation covering all geographic areas of Hungary. Saliva from 95 patients with OSCC and 80 controls, all Caucasian, were collected together with demographic and clinicopathological data. Salivary IL-6 mRNA was quantified by real-time quantitative PCR. Salivary IL-6 protein concentration was measured by enzyme-linked immune-sorbent assay. IL-6 protein expression in tumor samples was investigated by immunohistochemistry. Normalized salivary IL-6 mRNA expression values were significantly higher (p < 0.001) in patients with OSCC (mean ± SE: 3.301 ± 0.885) vs. controls (mean ± SE: 0.037 ± 0.012). Differences remained significant regardless of tumor stage and grade. AUC of the ROC curve was 0.9379 (p < 0.001; 95% confidence interval: 0.8973–0.9795; sensitivity: 0.945; specificity: 0.819). Salivary IL-6 protein levels were significantly higher (p < 0.001) in patients (mean ± SE: 70.98 ± 14.06 pg/mL), than in controls (mean ± SE: 12.45 ± 3.29). Specificity and sensitivity of IL-6 protein were less favorable than that of IL-6 mRNA. Salivary IL-6 mRNA expression was significantly associated with age and dental status. IL-6 manifestation was detected in tumor cells and tumor-infiltrating leukocytes, suggesting the presence of a paracrine loop of stimulation. Salivary IL-6 mRNA is one of the best performing and clinically relevant biomarkers of OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.