Emotion recognition systems (ERS) have become a popular research field to contribute to human-machine interaction in different areas. Different kinds of applications on ERS can serve different purposes. Artificial intelligence (AI) and the internet of things (IoT) are the technologies behind such applications. The main objective of this study is to enable researchers and developers to search for the most suitable options to develop an emotional state recognition system. More specifically, this paper presents work on ERS, which is built using physiological signals extracted from biosensors. It also presents details of how the extracted physiological signals are used to identify the user's emotional state. In this review, the sensors are categorized based on their modality: contact-based sensors and contactless sensors. Next, the ERS process is presented together with the reported results for each described technique. Articles from four different research databases were reviewed, of which 147 articles from 2009 to 2021 were referred to that are related to ERS using physiological signals. This paper should be significant for researchers developing systems that integrate human emotion recognition capability. The findings reported here can guide them in choosing suitable methods for their systems. Doi: 10.28991/ESJ-2022-06-05-017 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.