CD45 is a receptor-type protein tyrosine phosphatase involved in the regulation of lymphocyte activation. Different CD45 isoforms are generated by alternative splicing of three variable exons (A, B and C). The pattern of CD45 splicing depends upon cell type and state of activation. CD45RA isoforms (containing exon A-encoded sequences) can usually be found on a subset of resting T cells, but not on activated T cells. We have recently described a variant pattern of CD45RA expression which is characterized by continuous expression of CD45RA molecules on activated and memory T cells. Here, we demonstrate that this phenotype is associated with heterozygosity for a point mutation at nucleotide position 77 of exon A, leading to a C-->G transition. This mutation does not change the protein sequence of the CD45RA isoform. We conclude that position 77 is part of a motif necessary for splicing of exon A, which supports the hypothesis that sequences within exons have significant effects on alternative splicing. The mutation of this motif might prevent binding of a transacting splice factor. In the heterozygous state, this mutation is not associated with impaired T cell reactivity. Functional consequences of the homozygous state remain to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.