We have examined the relationships between dementia, loss of synaptic proteins, changes in the cytoskeleton, and deposition of beta-amyloid plaques in the neocortex in a clinicopathologically staged epidemiological cohort using a combination of biochemical and morphometric techniques. We report that loss of synaptic proteins is a late-stage phenomenon, occurring only at Braak stages 5 and 6, or at moderate to severe clinical grades of dementia. Loss of synaptic proteins was seen only after the emergence of the full spectrum of tau and beta-amyloid pathology in the neocortex at stage 4, but not in the presence of beta-amyloid plaques alone. Contrary to previous studies, we report increases in the levels of synaptophysin, syntaxin, and SNAP-25 at stage 3 and of alpha-synuclein and MAP2 at stage 4. Minimal and mild clinical grades of dementia were associated with either unchanged or elevated levels of synaptic proteins in the neocortex. Progressive aggregation of paired helical filament (PHF)-tau protein could be detected biochemically from stage 2 onwards, and this was earliest change relative to the normal aging background defined by Braak stage 1 that we were able to detect in the neocortex. These results are consistent with the possibility that failure of axonal transport associated with early aggregation of tau protein elicits a transient adaptive synaptic response to partial de-afferentation that may be mediated by trophic factors. This early abnormality in cytoskeletal function may contribute directly to the earliest clinically detectable stages of dementia.
Alpha-synuclein has assumed particular neuropathological interest in the light both of its identification as a non-beta-amyloid plaque constituent in Alzheimer disease (AD), and the recent association between dominant inheritance of Parkinson disease (PD) and 2 missense mutations at positions 30 and 53 of the synuclein protein. We report a systematic study of alpha-synuclein, tau, and ubiquitin immunoreactivity in representative neurodegenerative disorders of late life. The alpha-synuclein association with Lewy bodies is variable, peripheral, and is not stable with respect to proteases or acid treatment, whereas there is no association with Pick bodies. Stable patterns of immunoreactivity included neurites and a novel inclusion body. Although there is an overlap between the presence of Lewy bodies and stable alpha-synuclein immunoreactivity, this is seen only in the presence of concomitant neuropathological features of AD. The novel alpha-synuclein inclusion body identified in pyramidal cells of the medial temporal lobe in particular was found in AD and in the Lewy body variant of AD, and was associated neither with ubiquitin nor tau protein. The inclusion is therefore neither a Lewy body nor a PHF-core body, but may be confused with the Lewy body, particularly in the Lewy body variant of AD. Abnormal processing of alpha-synuclein leading to its deposition in the form of proteolytically stable deposits is a particular feature of the intermediate stages of AD.
Lewy bodies (LBs) appear in the brains of nondemented individuals and also occur in a range of neurodegenerative disorders, such as dementia with Lewy bodies (DLB) and Parkinson's disease. A number of people with a definite diagnosis of Alzheimer's disease (AD) also exhibit these intraneuronal inclusions in allo- and/or neocortical areas. The latter, referred to as Lewy body variant of AD (LBV), bears a clinical resemblance to AD in terms of age at onset, duration of illness, cognitive impairment, and illness severity. Since the presence of LBs is accompanied by neuronal cytoskeleton changes, it is possible that the latter may influence neuronal connectivity via alterations to the synaptic network. To address this, we examined the expression of synaptic proteins (synaptophysin, syntaxin, SNAP-25, and α-synuclein) and two cytoskeletal proteins (tau and MAP2) in the brain tissue of subjects enrolled in a population-based autopsy study (n = 47). They were divided into groups with no memory problems (control group, n = 15), LBV (n = 5), AD devoid of LBs (n = 17), cerebrovascular dementia (n = 3), and mixed dementia (n = 7). The LBV and AD groups had a similar degree of cognitive impairment and neuropathological staging in terms of Braak staging and CERAD score. In comparison with the control group and the dementia groups without LBs, the LBV group had significantly lower levels of syntaxin and SNAP-25 (23%) in the neocortex, and depletion of MAP2 (64%), SNAP-25 (34%), and α-synuclein (44%) proteins in the medial temporal lobes. These findings suggest that the t-SNARE complex deficit present in LBV may be associated with the presence of LB-related pathology and may explain the more profound cholinergic loss seen in these patients.
We have used biochemical assays to examine cingulate and occipital cortices from age-matched cases of Alzheimer's disease (AD; n = 12), senile dementia of the Lewy body type (SDLT; n = 13), Parkinson's disease (PD; 5 non-demented cases and 7 cognitively impaired cases) and controls (n = 11) for paired helical filaments (PHFs), phosphorylated and normal tau protein and Β/A4-protein. Whereas cingulate cortex is characterised by relatively high densities of cortical Lewy bodies in the SDLT cases and lower numbers in PD, these inclusion bodies were absent in the cingulate cortex from AD and control cases. Protease-resistant PHFs and hyperphosphorylated tau protein were found in AD and, at low levels, in a minority of SDLT cases. Qualitatively, both of these preparations were indistinguishable in SDLT from those found in AD but levels of both parameters in SDLT were less than 5% of those in AD. SDLT, PD and control groups did not differ from each other in terms of the quantity of protease-resistant PHFs or the level of hyperphosphorylated tau. Furthermore, PHF accumulation did not distinguish between PD cases with or without dementia. The levels of normal tau protein did not differ between the four groups. Β/A4 protein levels did not distinguish between PD and control groups, between AD and SDLT groups, or between SDLT and control groups for either cingulate or occipital cortices. Thus extensive accumulation of PHFs in either neurofibrillary tangles or dystrophic neurites is not a feature of either SDLT or PD. Our findings provide molecular support for the neuropathological and clinical separation of SDLT as a form of dementia that is distinct from AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.