Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium In an ecological survey of nitrogen-fixing bacteria isolated from the rhizosphere and as endophytes of sugarcane, maize and teosinte plants in Brazil, Mexico and South Africa, a new phylogenetically homogeneous group of N 2 -fixing bacteria was identified within the genus Burkholderia. This polyphasic taxonomic study included microscopic and colony morphology, API 20NE tests and growth on different culture media at different pH and temperatures, as well as carbon source assimilation tests and whole-cell protein pattern analysis. Analysis of 16S rRNA gene sequences showed 99?2-99?9 % similarity within the novel species and 97?2 % similarity to the closest related species, Burkholderia sacchari. The novel species was composed of four distinct amplified 16S rDNA restriction analysis groups. The DNA-DNA reassociation values within the novel species were greater than 70 % and less than 42 % for the closest related species, B. sacchari. Based on these results and on many phenotypic characteristics, a novel N 2 -fixing species is proposed for the genus Burkholderia, Burkholderia tropica sp. nov., with the type strain Ppe8 T (=ATCC BAA-831
[Pseudornonas] rubrisubalbicans, a mild plant pathogen, Herbaspirillurn seropedicae, and EF group 1 strains (clustered by an immunological method) were investigated by a polyphasic approach with DNA-rRNA and DNA-DNA hybridizations and auxanography on 147 substrates. Our results show that they all belong to the genus Herbaspirillum. In addition to H. seropedicae, two other species are described: Herbaspirillum mbrisubalbicans and a new unnamed species, Herbaspirillum species 3, containing mainly strains of clinical origin. The three species can be differentiated on the basis of their auxanographic features and DNA-DNA similarities. The type strain of H. rubrisubalbicans is NCPPB 1027 (=LMG 2286); representative strains of the third Herbaspirillum species are strains CCUG 189 (=LMG 5523), CCUG 10263 (=LMG 5934), and CCUG 11060 (=LMG 5321). It has been confirmed that H. rubrisubalbicans is an endophytic diazotroph. It colonizes the roots, the stems, and predominantly the leaves of sugarcane (Saccharurn spp.), while Herbaspirillurn seropedicae colonizes in large numbers many different species of the Gramineae. Both diazotrophic Herbaspirillurn species could be differentiated with rnesu-erythritol and N-acetylglucosamine. Oligonucleotide probes based on partial sequences of the 23s rRNA of H. seropedicae and H. rubrisubalbicans (HS and HR probes, respectively), were constructed and used as diagnostic probes.
Endophytic nitrogen-fixing bacteria have been isolated from graminaceous plants such as maize, rice, and sugarcane. They are thought to promote plant growth, not only by fixing nitrogen, but also by the production of plant hormones. The molecular mechanisms involved in this interaction are not yet clear. In this work, the identification of a receptor-like kinase (RLK), named SHR5, which may participate in signal transduction involved in the establishment of plant-endophytic bacteria interaction is described for the first time. SHR5 seems to be part of a novel subclass of RLKs present in a wide range of plant species. The expression of this gene is down-regulated in sugarcane plants associated exclusively with beneficial endophytic bacteria and is not a general response caused by micro-organisms or abiotic stress. In addition, more successful sugarcane-endophytic bacteria associations have a more pronounced decrease in SHR5 expression, suggesting that SHR5 mRNA levels in plant cells are inversely related to the efficiency of the association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.