The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and experimental demonstrations, have been reported in the literature. Typically, in these studies, a structured reservoir is required to make non-Markovian dynamics to emerge. Here, we investigate the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored noise. A canonical Lindblad-like master equation for the system is derived, using the stochastic wavefunction formalism. Then, the non-Markovianity of the evolution is witnessed using the Andersson, Cresser, Hall and Li measure. We evaluate the measure for three different noises and study the interplay between environment and noise pump necessary to generate quantum non-Markovianity, as well as the energy balance of the system. Finally, we discuss the possibility to experimentally implement the proposed model.
Several spurious effects are known to degrade the performance of phase-only spatial light modulators. We introduce a comprehensive model that takes into account the major ones: curvature of the back panel, pixel crosstalk and the internal Fabry–Perot cavity. To estimate the model parameters with high accuracy, we generate blazed grating patterns and acquire the intensity response curves of the first and second diffraction orders. The quantitative model is used to generate compensating holograms, which can produce optical modes with high fidelity.
The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern superresolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or noninvasive biological imaging. Far field, linear optical superresolution techniques based on passive analysis of light coming from the object would cover these gaps. In this Letter, we present the first proof-ofprinciple demonstration of such a technique for 2D imaging. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.
We report the first experimental demonstration of prime number sieve via linear optics. The prime numbers distribution is encoded in the intensity zeros of the far field produced by a spatial light modulator hologram, which comprises a set of diffraction gratings whose periods correspond to all prime numbers below 149. To overcome the limited far field illumination window and the discretization error introduced by the SLM finite spatial resolution, we rely on additional diffraction gratings and sequential recordings of the far field. This strategy allows us to optically sieve all prime numbers below 149 2 = 22201.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.