There is extensive evidence that serotonin (5-HT) is implicated in the neuroendocrine control regulating the secretion of several anterior pituitary hormones. It has also been reported that the posterior pituitary is necessary for prolactin (PRL) response to 5-HT as well as to suckling, in which 5-HT implication has been demonstrated. As we have previously shown that vasoactive intestinal peptide (VIP) mediates through an autocrine or paracrine action the PRL release induced by insulin-like growth factor I, thyrotropin-releasing hormone (TRH) and dopamine withdrawal, the aim of the present work was to determine whether 5-HT has a direct action on pituitary secretion and to study the possible role of pituitary VIP in this situation. Cells from the anterior pituitary lobe (AP) were cultured either alone or together with cells from the posterior pituitary lobe (PP). As melanotropes from PP express glucocorticoid receptors in vitro, both AP cultures and cocultures of AP/PP cells were incubated in the presence or absence of corticosterone (0.1 µg/ml), thus designing four experimental conditions. Then both AP and mixed cultures were incubated with 5-HT (100 nM) for 20, 45 and 180. The release of PRL, growth hormone (GH), corticotropin (ACTH) and luteinizing hormone (LH) was stimulated by 5-HT, but only in cocultures of AP/PP cells preincubated with corticosterone, whereas follicle-stimulating hormone and thyroid-stimulating hormone release was not modified. As AP cultures did not show any response to 5-HT, both in the presence or absence of corticosterone, and as melanotropes are the main cellular type present in the PP cultures, we studied the response of α-melanocyte-stimulating hormone (αMSH) to 5-HT in PP cells cultured with or without corticosterone. Serotonin did not modify αMSH release either in the absence or the presence of corticosterone. VIP release was also stimulated by 5-HT in the cocultures, and the time response profile was only similar to that of PRL. In order to study whether pituitary VIP is implicated in 5-HT action, cocultures preincubated with corticosterone were incubated in the presence of 5-HT, a VIP-receptor antagonist (VIP-At) or simultaneously with 5-HT plus VIP-At. PRL response to 5-HT was abolished by the simultaneous presence of VIP-At, whereas GH, ACTH and LH response remained unchanged. These data demostrate that: (1) 5-HT stimulates the secretion of PRL, GH, ACTH, LH and VIP acting directly at pituitary level on PP, probably by releasing an unidentified mediator from melanotropes; (2) glucocorticoids make the response of AP cells to 5-HT possible due to the presence of PP cells in the coculture; (3) PRL response to 5-HT is mediated through an autocrine and/or paracrine action of VIP.
Objective: The aim of this study was to prove the utility of GnRH analogues for the suppression of androgen secretion in a postmenopausal woman with a suspected virilizing ovarian tumour.
Design and Methods:We present a case of a 72-year-old woman with virilization of recent onset. Hormonal studies revealed a fourfold increase in serum testosterone levels, normal dehydroepiandrosterone sulphate concentrations and high levels of serum 17-hydroxyprogesterone levels. Computed axial tomography scan of the ovaries was normal and the adrenal glands showed a discrete enlargement. The long-acting GnRH analogue, triptorelin, was injected initially (3.75 mg i.m.) and serum hormone levels were measured weekly throughout one month. Results: GnRH produced a decrease in serum testosterone levels to normal values, in parallel with the suppression of serum LH and FSH concentrations. The patient was treated for three months with triptorelin and she experienced an amelioration of the hyperandrogenic symptoms. In order to achieve a diagnosis, the patient was submitted to a laparotomy that revealed a small hilus cell tumour in the left ovary. Conclusion: GnRH analogues may offer a good therapeutic option in some states of gonadotrophindependent hyperandrogenism of ovarian origin.
The effects of recombinant human insulin-like growth factor I (IGF-I) on both vasoactive intestinal peptide (VIP) and PRL production and gene expression were studied using rat anterior pituitary cell cultures grown in serum-free defined medium. We also examined whether pituitary VIP could be involved in the PRL response to IGF-I and hence in a paracrine regulatory system. Exposure of cultured anterior pituitary cells to IGF-I (2.6 nM) for 3 h caused a significant decrease in both VIP content and media PRL. Treatment with IGF-I (from 0.65-5.2 nM) for 48 h increased VIP production and VIP messenger RNA (mRNA) accumulation, whereas only an increase in media and intracellular PRL content without changes in mRNA was observed. In all these experiments, IGF-I led to a decrease in both GH secretion and expression. Immunoglobulins G purified from VIP antiserum inhibited IGF-I-induced PRL release without affecting intracellular and mRNA levels. The inhibition of both GH secretion and gene expression induced by IGF-I was not blocked by VIP antiserum. In conclusion, these results indicate that IGF-I induces VIP gene expression, and its secretion and also increases PRL secretion. The effect of IGF-I on PRL release is specifically mediated by VIP through a paracrine or autocrine mechanism.
The effects of recombinant human insulin-like growth factor I (IGF-I) on both vasoactive intestinal peptide (VIP) and PRL production and gene expression were studied using rat anterior pituitary cell cultures grown in serum-free defined medium. We also examined whether pituitary VIP could be involved in the PRL response to IGF-I and hence in a paracrine regulatory system. Exposure of cultured anterior pituitary cells to IGF-I (2.6 nM) for 3 h caused a significant decrease in both VIP content and media PRL. Treatment with IGF-I (from 0.65-5.2 nM) for 48 h increased VIP production and VIP messenger RNA (mRNA) accumulation, whereas only an increase in media and intracellular PRL content without changes in mRNA was observed. In all these experiments, IGF-I led to a decrease in both GH secretion and expression. Immunoglobulins G purified from VIP antiserum inhibited IGF-I-induced PRL release without affecting intracellular and mRNA levels. The inhibition of both GH secretion and gene expression induced by IGF-I was not blocked by VIP antiserum. In conclusion, these results indicate that IGF-I induces VIP gene expression, and its secretion and also increases PRL secretion. The effect of IGF-I on PRL release is specifically mediated by VIP through a paracrine or autocrine mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.