Foliar and root applications of different silicon (Si)-based formulations were evaluated for their effects in reducing powdery mildew and promoting growth of wheat plants. X-ray microanalyses of treated plants revealed that root applications resulted in consistent deposition of Si in the leaves. In terms of powdery mildew control, root applications at 1.7 mM Si gave consistently the best results, reducing disease severity by as much as 80%, regardless of the product used. Although less effective than root applications, foliar treatments with both Si and nutrient salt solutions led to a significant reduction of powdery mildew on wheat plants. This suggests a direct effect of the products on powdery mildew rather than one mediated by the plant as in the case of root amendments. In our experiments, Si amendment, either through the roots or the leaves, did not increase plant growth. These results lead to the conclusion that Si is primarily, if not exclusively, absorbed by the root system and that such absorption by the roots is necessary for an optimal prophylactic effect.
The effect of root or leaf applications of soluble Si on severity of grape (Vitis vinifera L.) powdery mildew [Uncinula necator (Schwein) Burrill] was determined. On potted plants, root-feeding at 1.7 mm Si had no effect on disease severity, but foliar sprays at 17 mm Si substantially reduced the number of mildew colonies that developed on inoculated leaves. Scanning electron micrographs showed that, on Si-sprayed leaves, hyphae did not develop in areas where thick Si deposits were present on the leaf surface; and where surface deposits were not present, Si was translocated laterally through the leaf and surrounded the appressoria. Leaves on plants that were fed Si via roots showed a similar deposition of Si surrounding the appressoria. On water-sprayed leaves and leaves from untreated plants, internal deposition of Si was more variable and generally less than on Si-sprayed or root-fed plants. Conidia germination and germtube development on agar media were weakly promoted by the presence of Si. Reduced severity of grape mildew by Si sprays may be partly due to a physical barrier to hyphal penetration and to a resistance response involving the lateral movement of Si and its deposition within the leaf at fungal penetration sites.
The effect of soluble potassium silicate applied to cucumber (Cucumis sativus L.), muskmelon (C. melo L.), and zucchini squash (Cucurbita pepo L.) on the severity of powdery mildew was examined. Application methods included amending nutrient solutions to a concentration of 1.7 mm Si and foliar sprays containing 1.7, 8.5, 17, and 34 mm Si. Untreated plants and plants sprayed with distilled water were used as controls. The leaves of all plants were inoculated with known concentrations of conidia of Sphaerotheca fuliginea (Schlecht.:Fr.) Poll. (cucumber and mu&melon) or Erysiphe cichoracearum DC.: Merat (zucchini squash) 1 day after the sprays were applied. Inoculated leaves on plants receiving the Si-amended nutrient solution or foliar sprays of ≥ 17.0 mm Si developed fewer powdery mildew colonies than those on control plants. Results of a separate experiment that included a potassium spray, indicated that the active ingredient of the potassium silicate sprays appears to be Si. Experiments to test the persistence of Si foliar sprays on cucumber demonstrated that a 17 mm Si spray applied 7 days before inoculation with S. fuliginea reduced mildew colony formation.
This genome announcement includes draft genomes from
Claviceps purpurea s.lat.,
including
C. arundinis
,
C. humidiphila
and
C.
cf.
spartinae
.
The draft genomes of
Davidsoniella eucalypti, Quambalaria eucalypti
and
Teratosphaeria destructans,
all three important eucalyptus pathogens, are presented. The insect associate
Grosmannia galeiformis
is also described. The pine pathogen genome of
Fusarium circinatum
has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the
Fusarium fujikuroi
species complex. This new assembly of the
F. circinatum
genome provides 12 pseudomolecules that correspond to the haploid chromosome number of
F. circinatum
. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.