a b s t r a c tThe roof geometry of a leeward sawtooth roof building can have a large influence on the cross-ventilation flow. In this paper, five different leeward sawtooth roof geometries are evaluated using Computational Fluid Dynamics (CFD). The 3D CFD simulations are performed using the steady Reynolds-Averaged Navier-Stokes approach with the SST k-ω turbulence model to provide closure to the governing equations. The computational grid is based on a grid-sensitivity analysis and the computational model is successfully validated using PIV measurements for a generic isolated building from literature. The five different roof geometries that are studied include one straight and four curved roofs. The curved roofs can be subdivided in one concave, one hybrid (convex-concave) and two convex roof geometries. It is shown that a straight or convex roof geometry can maximize the underpressure in the wake of the building, where the outlet opening is located, which results in enhanced wind-driven cross-ventilation flow. Analysis of the results shows that for a normal wind incidence angle (0°) the straight and convex leeward sawtooth roof geometries can result in an increase of the volume flow rate by 13.0%, 12.5% and 12.3% respectively compared to a concave roof geometry. Furthermore, the increase of the indoor air velocity can be as high as 90% in the upper part of the occupied zone (at h¼ 1.7 m above ground level) for convex versus concave roofs.
a b s t r a c tAn eaves is a roof extension that can protect the indoor environment from direct solar radiation, the exterior facade from wetting of by wind-driven rain and can be useful to enhance cross-ventilation. This paper evaluates the impact of eaves configuration on wind-driven cross-ventilation of a generic leeward sawtooth roof building. Both the type of eaves (windward versus leeward) and the eaves inclination angles are investigated. Isothermal Computational Fluid Dynamics (CFD) simulations are performed using the 3D steady Reynolds-Averaged NaviereStokes (RANS) approach. A grid-sensitivity analysis is performed and validation of the CFD results is conducted based on wind-tunnel measurements with Particle Image Velocimetry from literature. The ventilation evaluation is based on the volume flow rates and the indoor mean velocities. The eaves length is 1/4 of the building depth and the inclination is varied between 90 and À45 for both the windward and leeward eaves. The results show that windward eaves with an inclination of 27 (equal to roof inclination) result in the highest increase of the volume flow rate (15%) compared to the building without eaves. Furthermore, the flow through the occupied zone is more horizontally directed. Leeward eaves have a smaller influence on the ventilation volume flow rate than windward eaves; the maximum increase in volume flow rate is only 6% when a 90 inclination is employed. Application of both (windward and leeward eaves) results in an increase of the volume flow rate of 24%, which is 3% more than the sum of the increases by the two eaves separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.