A major obstacle in understanding the evolution of Cenozoic climate has been the lack of well dated terrestrial evidence from high-latitude, glaciated regions. Here, we report the discovery of exceptionally well preserved fossils of lacustrine and terrestrial organisms from the McMurdo Dry Valleys sector of the Transantarctic Mountains for which we have established a precise radiometric chronology. The fossils, which include diatoms, palynomorphs, mosses, ostracodes, and insects, represent the last vestige of a tundra community that inhabited the mountains before stepped cooling that first brought a full polar climate to Antarctica. Paleoecological analyses, 40 Ar/ 39 Ar analyses of associated ash fall, and climate inferences from glaciological modeling together suggest that mean summer temperatures in the region cooled by at least 8°C between 14.07 ؎ 0.05 Ma and 13.85 ؎ 0.03 Ma. These results provide novel constraints for the timing and amplitude of middle-Miocene cooling in Antarctica and reveal the ecological legacy of this global climate transition.climate change ͉ tundra biota ͉ Dry Valleys ͉ diatoms ͉ ostracods
The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.
An exceptional triple palynological signal (unusually high abundance of marine, freshwater,\ud and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL\ud (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints\ud for the Middle Miocene Climatic Optimum. Compared to elsewhere in the core, this\ud signal comprises a 2000-fold increase in two species of dinofl agellate cysts, a synchronous fi vefold\ud increase in freshwater algae, and up to an 80-fold increase in terrestrial pollen, including\ud a proliferation of woody plants. Together, these shifts in the palynological assemblages\ud ca. 15.7 Ma ago represent a relatively short period of time during which Antarctica became\ud abruptly much warmer. Land temperatures reached 10 C (January mean), estimated annual\ud sea-surface temperatures ranged from 0 to 11.5 C, and increased freshwater input lowered\ud the salinity during a short period of sea-ice reduction
The devastating effect on terrestrial plant communities of a bolide impact at the Cretaceous-Tertiary boundary is shown in fossil pollen and spore assemblages by a diverse flora being abruptly replaced by one dominated by a few species of fern. Well documented in North America, this fern spike signals widespread deforestation due to an impact winter or massive wildfires. A Southern Hemisphere record of a fern spike, together with a large iridium anomaly, indicates that the devastation was truly global. Recovery of New Zealand plant communities followed a pattern consistent with major climatic perturbations occurring after an impact winter that was possibly preceded by global wildfires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.