This paper presents a grid synchronization structure for three-phase electric power systems based on the use of a filtered quadrature signal generator (FQSG) and a phase-locked loop (PLL) structure, named Adaptive Vector Grid Synchronization system (AVGS). This system estimates the magnitude, frequency and phase of a signal, specially three-phase voltages and currents, and allows fast and accurate detection of the symmetrical components meet with the transient operating requirements imposed by grid codes. The adaptive vector based PLL (VB-PLL) permits offering a proper performance under generic grid conditions, especially under faulty scenarios. For the particular case of grid voltage synchronization of wind turbine converters, the AVGS is adjusted to provide a good response considering the most critical situation, which is the low voltage ride through (LVRT). This paper includes a detailed study of the proposed grid synchronization system and simulations with registers of real grid disturbances provided by Ingeteam Power Technology S.A.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.