The structural, magnetic and luminescence properties of praseodymium-doped zirconia powders of compositions Pr0.03Zr0.97O2 and Pr0.05Zr0.95O2 synthesized by a sol–gel process have been investigated. X-ray diffraction patterns indicate that these materials crystallize in a tetragonal fluorite-type structure. Scanning electron microscopy shows that the powders exhibit an agglomerated microcrystalline structure and the grain size may be in the order of 5–20 µm. The study of the magnetic properties of these doped metal oxides indicates a Curie–Weiss behaviour in the temperature range (100–300) K that allow us to estimate an effective magnetic moment of 3.51 μB, which indicates the presence of Pr3+ in the grown samples. Cathodoluminescence spectra recorded at temperatures between 85 and 295 K show emission peaks that can be attributed to transitions between different states within the 4f2 configuration of Pr3+ ions incorporated in the zirconia crystal lattice. Thermoluminescence measured at temperatures ranging from 373 to 773 K and at 550 nm wavelength show an intense and broad peak around 653 K for the Pr-doped zirconia which is not observed in the undoped material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.