MicroRNAs (miRNAs) are members of a family of non-coding RNAs of 8-24 nucleotide RNA molecules that regulate target mRNAs. The first miRNAs, lin-4 and let-7, were first discovered in the year 1993 by Ambros, Ruvkun, and co-workers while studying development in Caenorhabditis elegans. miRNAs can play vital functions form C. elegans to higher vertebrates by typical Watson-Crick base pairing to specific mRNAs to regulate the expression of a specific gene. It has been well established that multicellular eukaryotes utilize miRNAs to regulate many biological processes such as embryonic development, proliferation, differentiation, and cell death. Recent studies have shown that miRNAs may provide new insight in cancer research. A recent study demonstrated that more than 50% of miRNA genes are located in fragile sites and cancer-associated genomic regions, suggesting that miRNAs may play a more important role in the pathogenesis of human cancers. Exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications will be important. Recent studies suggest that miRNA expression profiling can be correlated with disease pathogenesis and prognosis, and may ultimately be useful in the management of human cancer. In this review, we focus on how miRNAs regulate tumorigenesis by acting as oncogenes and anti-oncogenes in higher eukaryotes.
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
RNA interference (RNAi), an accurate and potent gene-silencing method, was first experimentally documented in 1998 in Caenorhabditis elegans by Fire et al., who subsequently were awarded the 2006 Nobel Prize in Physiology/Medicine. Subsequent RNAi studies have demonstrated the clinical potential of synthetic small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) in dental diseases, eye diseases, cancer, metabolic diseases, neurodegenerative disorders, and other illnesses. siRNAs are generally from 21 to 25 base-pairs (bp) in length and have sequence-homology-driven gene-knockdown capability. RNAi offers researchers an effortless tool for investigating biological systems by selectively silencing genes. Key technical aspects--such as optimization of selectivity, stability, in vivo delivery, efficacy, and safety--need to be investigated before RNAi can become a successful therapeutic strategy. Nevertheless, this area shows a huge potential for the pharmaceutical industry around the globe. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs, could effectively activate a particular gene in a sequence-specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed 'RNA activation' (RNAa). In this review, we analyze these research findings and discussed the in vivo applications of siRNAs, miRNAs, and shRNAs.
Abstract:RNA interference (RNAi) is a powerful technology with huge applications for functional genomics, target identification in drug discovery and elucidation of molecular signaling pathways. Current RNAi studies have demonstrated the clinical potential of small interfering RNAs (siRNAs) in metabolic diseases, cancer, AIDS, malaria, neurodegenerative disorders, dental diseases and other illnesses. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs could effectively activate a particular gene in a sequence specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed as RNA activation (RNAa). The paradoxical concept of Yin and Yang, which describe two primal opposing but complementary principles, can potentially be applied to elucidate the complex phenomenon of RNAa/RNAi in the RNAome. This warrants a proper understanding of the RNAi/RNAa molecular pathways in living organisms before any of the small dsRNAs can potentially be exploited for therapeutics in human beings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.