Corals display different growth forms as an adaptive response to both local and global environmental conditions. Despite the importance of morphologic variability on corals, growth and calcification rates of different coral morphotypes have been poorly recorded in the Eastern Pacific. The purpose of this study was to compare annual extension rate (cm yr −1 ), skeletal density (g cm −3 ), calcification rate (g cm −2 yr −1 ), and tissue thickness (mm) of males and females colonies in three different morphotypes of the common reef-building coral Porites lobata; columnar, massive, and free-living (corallith) forms. The results show significant differences in all four-growth parameters between morphotypes over a 6-year interval, and also differences between males and females in most morphotypes. Massive colonies presented 15-33% faster annual rates compared with columnar and free-living. Male colonies showed 30-40% faster annual rates than females for both columnar and corallith morphologies. These data exhibit the extensive plasticity of this species and highlight the fact that each morphotype × gender group produced a different physiological response to environmental conditions. Therefore, these information reveal that P. lobata from the Eastern Tropical Pacific develops different morphologies to allow it to maintain coral species population, characteristics that enhance the species possibility to further its distribution across the reef-framework.
Pocilloporids are one of the major reef-building corals in the eastern tropical Pacific (ETP) and also the most affected by thermal stress events, mainly those associated with El Niño/Southern Oscillation (ENSO) periods. To date, coral growth parameters have been poorly reported in Pocillopora species in the northeastern region of the tropical Pacific. Monthly and annual growth rates of the three most abundant morphospecies (P. cf. verrucosa, P. cf. capitata, and P. cf. damicornis) were evaluated during two annual periods at a site on the Pacific coast of Mexico. The first annual period, 2010–2011 was considered a strong ENSO/La Niña period with cool sea surface temperatures, then followed by a non-ENSO period in 2012–2013. The linear extension rate, skeletal density, and calcification rate averaged (±SD) were 2.31 ± 0.11 cm yr−1, 1.65 ± 0.18 g cm−3, 5.03 ± 0.84 g cm−2 yr-1 respectively, during the strong ENSO event. In contrast, the respective non-ENSO values were 3.50 ± 0.64 cm yr−1, 1.70 ± 0.18 g cm−3, and 6.02 ± 1.36 g cm−2 yr−1. This corresponds to 52% and 20% faster linear extension and calcification rates, respectively, during non-ENSO period. The evidence suggests that Pocillopora branching species responded positively with faster growth rates following thermal anomalies, which allow them to maintain coral communities in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.