Aerodynamic loss measurements are presented for a state-of-the-art film cooled transonic gas turbine rotor blade tested in a two-dimensional cascade. A mixture of carbon dioxide and air, which correctly simulated engine coolant-to-mainstream density ratio and blowing rate, was ejected from each of five individual cooling hole rows in the aerofoil suction surface. The temperature of the coolant was equal to the cascade inlet stagnation temperature. The dependence of blade row efficiency and turning on outlet Mach number, blowing rate, and coolant-to-mainstream density ratio was investigated. Measured surface static pressure distributions were compared with time-marching predictions for both the datum aerofoil and film cooled blades. Detailed suction surface boundary layer measurements both upstream and downstream of a cooling film were compared with available differential calculation procedures. Unexpectedly, films downstream of the throat, even at blowing rates near unity, did not generate significantly higher losses compared to prethroat suction surface films on this aerofoil.
Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7–1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major three-dimensional effects on the flow correctly.
A simple technique has been developed which samples the dynamic image plane information of a schlieren system using a digital correlator. Measurements have been made in the passages and in the wakes of transonic turbine blades in a linear cascade. The wind tunnel runs continuously and has independently variable Reynolds and Mach number. As expected, strongly correlated vortices were found in the wake and trailing edge region at 50 KHz. Although these are strongly coherent we show that there is only limited cross-correlation from wake to wake over a Mach no. range M = 0.5 to 1.25 and variation of Reynolds number from 3 × 105 to 106. The trailing edge fluctuation cross correlations were extended both upstream and downstream and preliminary measurements indicate that this technique can be used to obtain information on wake velocity. The vortex frequency has also been measured over the same Mach number range for two different cascades. The results have been compared with high speed schlieren photographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.