Increased activity of the epithelial sodium channel (ENaC) in the respiratory airways contributes to the pathophysiology of cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In some patients suffering from atypical CF a mutation can be identified in only one CFTR allele. We recently identified in this group of CF patients a heterozygous mutation (W493R) in the α-subunit of ENaC. Here, we investigate the functional effects of this mutation by expressing wild-type αβγENaC or mutant α W493R βγENaC in Xenopus oocytes. The αW493R mutation stimulated amiloride-sensitive whole-cell currents ( I ami ) by ∼4-fold without altering the single-channel conductance or surface expression of ENaC. As these data suggest that the open probability (P o ) of the mutant channel is increased, we investigated the proteolytic activation of ENaC by chymotrypsin. Single-channel recordings revealed that chymotrypsin activated near-silent channels in outside-out membrane patches from oocytes expressing wild-type ENaC, but not in membrane patches from oocytes expressing the mutant channel. In addition, the αW493R mutation abolished Na + self inhibition of ENaC, which might also contribute to its gain-of-function effects. We conclude that the αW493R mutation promotes constitutive activation of ENaC by reducing the inhibitory effect of extracellular Na + and decreasing the pool of near-silent channels. The resulting gain-of-function phenotype of the mutant channel might contribute to the pathophysiology of CF in patients carrying this mutation.
For people at risk for Huntington's disease, the anxiety and uncertainty about the future may be very burdensome and may be an obstacle to personal decision making about important life issues, for example, procreation. For some at risk persons, this situation is the reason for requesting predictive DNA testing. The aim of this paper is two-fold. First, we want to evaluate whether knowing one's carrier status reduces anxiety and uncertainty and whether it facilitates decision making about procreation. Second, we endeavour to identify pretest predictors of psychological adaptation one year after the predictive test (psychometric evaluation of general anxiety, depression level, and ego strength). The impact of the predictive test result was assessed in 53 subjects tested, using pre-and post-test psychometric measurement and self-report data of follow up interviews. Mean anxiety and depression levels were significantly decreased one year after a good test result; there was no significant change in the case of a bad test result. The mean personality profile, including ego strength, remained unchanged one year after the test. The study further shows that the test result had a definite impact on reproductive decision making.Stepwise multiple regression analyses were used to select the best predictors of the subject's post-test reactions. The results indicate that a careful evaluation of pretest ego strength, depression level, and coping strategies may be helpful in predicting post-test reactions, independently of the carrier status. Test result (carrier/ non-carrier), gender, and age did not significantly contribute to the prediction. About one third of the variance of posttest anxiety and depression level and more than half of the variance of ego strength was explained, implying that other psychological or social aspects should also be taken into account when predicting individual post-test reactions. (3 Med Genet 1996;33:737-743)
Abstract. We have synthesized an antisense oligonucleotide primer that matches a supposedly conserved sequence in messages for heparan sulfate proteoglycans with transmembrane orientations. With the aid of this primer we have amplified partial and selected fulllength copies of a message from human lung fibroblasts that codes for a novel integral membrane heparan sulfate proteoglycan. The encoded protein is 198 aminoacids long, with discrete cytoplasmic, transmembrane, and amino-terminal extracellular domains. Except for the sequences that represent putative heparan sulfate chain attachment sites, the extracellular domain of this protein has a unique structure. The transmembrane and cytoplasmic domains, in contrast, are highly similar to the corresponding domains of fibroglyean and syndecan, the two cell surface proteoglycans that figured as models for the design of the antisense primer. This similarity includes the conservation of four tyrosine residues, one immediately in front of the stop transfer sequence and three in the cytoplasmic segment, and of the most proximal and most distal cytoplasmic sequences. The eDNA detects a single 2.6-kb message in cultured human lung fibroblasts and in a variety of human epithelial and fibroblastie cell lines. Polyelonal and monoclonal antibodies raised against the encoded peptide after expression as a beta-galactosidase fusion protein react with the 35-kD coreprotein of a cell surface heparan sulfate proteoglycan of human lung fibroblasts and decorate the surface of many cell types. We propose to name this proteoglyean "amphiglycan" (from the Greek words amphi, "around, on both sides of" and amphoo, "both") referring to its domain structure which extends on both sides of the plasmamembrane, and to its localization around cells of both epithelial and fibroblastic origin.
Heparan sulfate accumulates on cell surfaces and at cell-matriK interfaces, and functionally modulates several of the effector molecules that support the interactions, growth, and differentiation of developing tissues. Using heparan sulfatespecific monoclonal antibodies MAb, we obtained evidence that extracts from rodent embryos contain multiple forms of cell surface-associated heparan sulfate proteoglycan (PG).Taking tooth development in the mouse embryo as a model to further investigate the relevance of this PG redundancy and using MAb against heparan sulfate, antibodies specific for syndecan (syndecan-1) andfibroglycan (syndecan-2) (two distinct members of a larger family of cell-surface heparan
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.