PA6 and PMMA polymers with different MWCNTs addition (5, 7 and 9 wt %) were synthetized through casting solution, resulting in improvement properties in contrast to pristine polymers. SEM images showed the MWCNTs embedded into polymeric matrices. D, G and G´ bands of MWCNTs were confirmed by Raman spectroscopy and functional groups observed in both nanocomposites by FTIR demonstrated a strong interaction. A significant increasing in electrical conductivity and microhardness was observed in all the nanocomposites. Major microhardness values were obtained in MWCNTs/PA6 (50 HV) however the MWCNTs/PMMA nanocomposites showed the highest electrical conductivity value (6.4×10-4 S/cm).
Carbon nanotubes (CNTs) were synthesized by Chemical Vapor Deposition (CVD) from diethyl ether, butanol, hexane and ethyl acetate. A quartz tube with a stainless steel tube catalyst core with 0.019 m diameter and 0.6 m large formed the reactor. To avoid combustion, argon was used as the carrier gas. Time process ranged 30 to 60 min. The range of CNTs synthesis temperature was 680-850 °C for different precursors. Scanning Electron Microscopy micrographs have demonstrated tangled CNTs growth in all samples, thus presenting difficult length measurement. The CNTs diameters from diethyl ether are 45-200 nm, butanol diameter range from 55-230 nm, hexane diameter range is 50-130 nm and ethyl acetate range from 100 to 300 nm. Carbon content for all samples was higher than 93 %, CNTs from butanol showed carbon concentration up to 99%. FTIR, Raman and X-Ray Spectroscopies spectra for all samples demonstrated the characteristics signals present in carbon nanotubes. This research proposes a simple, effective and innovative method to synthesize CNTs by CVD on iron stainless steel catalyst in combination with diethyl ether, ethyl acetate, butanol and hexane as precursors by applying the principles of green chemistry, sustainability and its ease to be scaled.
Composites from carbon nanotubes and polymers have been synthesized and studied. The composites were obtained joining carbon nanotubes with polymethyl methacrylate, nylon-6 and polystyrene. The materials were observed through scanning electron microscopy to evaluate the carbon nanotubes dispersion in the polymeric matrices. FTIR and Raman spectroscopies were used to analyze the interactions among functionalized and non-functionalized multiwalled carbon nanotubes and polymers, demonstrating affinity and peculiar spectra behaviors for each composite with different carbon nanotubes loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.