all-trans-Retinoic acid is known to bind to the retinoic acid receptors (RARs) resulting in an increase in their transcriptional activity. In contrast, recently identified 9-cis-retinoic acid (9-cis-RA), which is an additional endogenous RA isomer, is capable of binding to both RARs and retinoid X receptors (RXRs). These distinct properties have raised questions as to the biological role governed by these two retinoic acid isomers and the set of target genes that they regulate. Herein, we report the synthesis of high specific activity [3H]-9-cis-RA and its application to study the ligand-binding properties of the various retinoid receptor subtypes. We examined the binding properties of RARs and RXRs for a series of synthetic retinoids and compared the ligand-binding properties of these arotinoid analogs with their ability to regulate gene expression via the retinoid receptors in a cotransfection assay. The utilization of the [3H]-9-cis-RA competitive binding assay and the cotransfection assay has made it possible to rapidly identify important structural features of retinoids leading to increased selectivity for either the RAR or RXR receptor subtypes.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.