The cool white dwarf SDSS J124231.07+522626.6 exhibits photospheric absorption lines of 8 distinct heavy elements in medium resolution optical spectra, notably including oxygen. The T eff = 13 000 K atmosphere is helium-dominated, but the convection zone contains significant amounts of hydrogen and oxygen. The four most common rock-forming elements (O, Mg, Si, and Fe) account for almost all the accreted mass, totalling at least 1.2×10 24 g, similar to the mass of Ceres. The time-averaged accretion rate is 2 × 10 10 g s −1 , one of the highest rates inferred among all known metal-polluted white dwarfs. We note a large oxygen excess, with respect to the most common metal oxides, suggesting that the white dwarf accreted planetary debris with a water content of ≈ 38 per cent by mass. This star, together with GD 61, GD 16, and GD 362, form a small group of outliers from the known population of evolved planetary systems accreting predominantly dry, rocky debris. This result strengthens the hypothesis that, integrated over the cooling ages of white dwarfs, accretion of water-rich debris from disrupted planetesimals may significantly contribute to the build-up of trace hydrogen observed in a large fraction of helium-dominated white dwarf atmospheres.
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane named the Zwicky Transient Facility and exhibits a period of P = 39.3401(1) min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of T eff = 42, 400 ± 300 K and a surface gravity of log(g)= 5.77 ± 0.05. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass M sdOB = 0.337 ± 0.015 M and a white dwarf accretor with a mass M WD = 0.545 ± 0.020 M .Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a 2.5 − 2.8 M star lost its envelope when crossing the Hertzsprung Gap. To match its current P orb , T eff , log(g), and masses, we estimate a post-common envelope period of P orb ≈ 150 min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of ≈ 0.1 M and will merge with its carbon/oxygen white dwarf companion after ≈ 17 Myr and presumably explode as a thermonuclear supernova or form an R CrB star.
We report the discovery of a white dwarf exhibiting deep, irregularly shaped transits, indicative of circumstellar planetary debris. Using Zwicky Transient Facility DR2 photometry of ZTF J013906.17+524536.89 and follow-up observations from the Las Cumbres Observatory, we identify multiple transit events that recur every ≈107.2 days, much longer than the 4.5-4.9 hr orbital periods observed in WD 1145+017, the only other white dwarf known with transiting planetary debris. The transits vary in both depth and duration, lasting 15-25 days and reaching 20%-45% dips in flux. Optical spectra reveal strong Balmer lines, identifying the white dwarf as a DA with = T 10, 530 140 K eff and ( ) = g log 7.86 0.06. A Ca IIK absorption feature is present in all spectra both in and out of transit. Spectra obtained during one night at roughly 15% transit depth show increased Ca IIK absorption with a model atmospheric fit suggesting [Ca/H]=−4.6±0.3, whereas spectra taken on three nights out of transit have [Ca/H] of −5.5, −5.3, and −4.9 with similar uncertainties. While the Ca IIK line strength varies by only 2σ, we consider a predominantly interstellar origin for Ca absorption unlikely. We suggest a larger column density of circumstellar metallic gas along the line of site or increased accretion of material onto the white dwarf's surface are responsible for the Ca absorption, but further spectroscopic studies are required. In addition, high-speed time series photometry out of transit reveals variability with periods of 900 and 1030 s, consistent with ZZ Ceti pulsations.
We present a novel method to detect variable astrophysical objects and transient phenomena using anomalous excess scatter in repeated measurements from public catalogs of Gaia DR2 and Zwicky Transient Facility (ZTF) DR3 photometry. We first provide a generalized, all-sky proxy for variability using only Gaia DR2 photometry, calibrated to white dwarf stars. To ensure more robust candidate detection, we further employ a method combining Gaia with ZTF photometry and alerts. To demonstrate its efficacy, we apply this latter technique to a sample of roughly 12,100 white dwarfs within 200 pc centered on the ZZ Ceti instability strip, where hydrogen-atmosphere white dwarfs are known to pulsate. By inspecting the top 1% of the samples ranked by these methods, we demonstrate that both the Gaia-only and ZTF-informed techniques are highly effective at identifying known and new variable white dwarfs, which we verify using follow-up, high-speed photometry. We confirm variability in all 33 out of 33 (100%) observed white dwarfs within our top 1% highest-ranked candidates, both inside and outside the ZZ Ceti instability strip. In addition to dozens of new pulsating white dwarfs, we also identify five white dwarfs highly likely to show transiting planetary debris; if confirmed, these systems would more than triple the number of white dwarfs known to host transiting debris.
Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and nearinfrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3±0.3 days and Δm 15 (B)=0.96±0.03 mag, but it seems to have bluer B−V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49×10 43 erg s −1 , from which we derive a nickel mass as 0.55±0.04 M e by fitting radiation diffusion models powered by centrally located 56 Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56 Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The CII features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.