The Inner California Borderland (ICB) records a middle Oligocene transition from subduction to microplate capture along the southern California and Baja coast. The closest nearshore fault system, the Newport-Inglewood/Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to Newport Beach, California. Holocene slip rates along the NIRC are 1.5–2.0 mm/year in the south and 0.5 mm/year along its northern extent based on trenching and well data. High-resolution 3D seismic surveys of the NIRC fault system offshore of San Onofre were acquired to define fault interaction across a prominent strike-slip step-over. The step-over deformation results in transpression that structurally controls the width of the continental shelf in this region. Shallow coring on the shelf yields a range of sedimentation rates from 0.27–0.28 mm/year. Additionally, a series of smaller anticlines and synclines record subtle changes in fault trends along with small step-overs and secondary splay faults. Finally, sedimentary units onlapping and dammed by the anticline, place constraints on the onset of deformation of this section of the NIRC fault system. Thickness estimates and radiocarbon dating yield ages of 560,000 to 575,000 years before present for the onset of deformation.
Deformation observed along the San Mateo (SMT) and San Onofre trends (SOT) in southern California has been explained by two opposing structural models, which have very different hazard implications for the coastal region. One model predicts that the deformation is transpressional in a predominantly right lateral fault system with left lateral step-overs. Conversely in the alternative model, the deformation is predicted to be compressional associated with a regional blind thrust that reactivated detachment faults along the continental margin. State-of-the-art 3D P-Cable seismic data were acquired to characterize the geometry and linkage of faults in the SMT and SOT. The new observations provide evidence that deformation along the slope is more consistent with step-over geometry than a regional blind thrust model. For example, regions in the SOT exhibit small scale compressional structures that deflect canyons along jogs in the fault segments across the slope. The deformation observed in the SMT along northwesterly trending faults has a mounded, bulbous character in the swath bathymetry data with steep slopes ( ∼ 25°) separating the toe of the slope and the basin floor. The faulting and folding in the SMT are very localized and occur where the faults trend more northwesterly (average trend ∼ 285°) with the deformation dying away both towards the north and east. In comparison, the SOT faults trend more northerly (average trend ∼ 345°). The boundary between these fault systems is abrupt and characterized by shorter faults that appear to be recording right lateral displacement and possibly accommodating the deformation between the two larger fault systems. Onlapping undeformed turbidite layers reveal that the deformation associated with both major fault systems may be inactive and radiocarbon dating suggests deformation ceased in the middle to late Pleistocene (between 184 and 368 kyr). In summary, our preferred conceptual model for tectonic deformation along the SMT and SOT is best explained by left lateral step-overs along the predominantly right lateral strike-slip fault systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.