Microvascular transport is complex due to its heterogeneity. Many researchers have been developing mathematical and computational models in predicting microvascular geometries and blood transport. However, previous works were focused on developing simulation models, not on validating suggested models with microvascular geometry and blood flow in the real microvasculature. In this paper, we suggest a computational model for microvascular transport with experimental validation in its geometry and blood flow. The geometry is generated by controlling asymmetric conditions of microvascular network. Also, the blood flow in microvascular networks is predicted by considering in vivo viscosity, Poiseuille flow model, and hematocrit redistribution by plasma skimming. The suggested model is validated by the measured data in rat mesentery. Also, the microvascular transport in a case of mouse cortex is predicted and compared against experimental data to check applicability of the suggested model.
The changes of microregional perfusion in a hamster cheek pouch membrane were investigated. The vessel network of the membrane was visualized by preparing a transparent chamber, which was heated with circulating water at 42 degree C. Blood perfusion was monitored by using a laser Doppler flowmeter (LDF), which was used either in a conventional way by positioning the probe stationary or in a novel way by constantly moving the probe over the surface of the chamber (scanning). When a segment of tissue was subjected to the LDF scanning, the profile of scanned LDF values was well correlated with the distribution of vessels. Therefore, this scanning technique was useful in localizing the probe in tissues with respect to vessels. Since the scanning can be repeated every other minute, this technique also offered continuous monitoring of tissue blood flow at multiple sites. Upon heating, different vessels individually responded to the first and second heatings followed by coolings, suggesting a heterogeneous heat response in the connective tissue of the hamster cheek pouch membrane. This scanning technique proved very useful in collecting information for the study of the heterogeneous nature of blood flow in normal and tumour tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.