Common structural motifs of Haemophilus influenzae lipopolysaccharide (LPS) are globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEA-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEA-->4]-alpha-Kdo-(2-->6)-lipid A. We report here structural studies of LPS from nontypeable H. influenzae strain 1124 expressing these motifs linked to both the proximal heptose (HepI) and HepIII at the same time. This novel finding was obtained by structural studies of LPS using NMR techniques and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MS(n)() on permethylated dephosphorylated OS. The use of defined mutants allowed us to confirm structures unambiguously and understand better the biosynthesis of each of the globotetraose units. We found that lgtC is involved in the expression of alpha-d-Galp-(1-->4)-beta-d-Galp in both extensions, whereas lic2A directs only the expression of beta-d-Galp-(1-->4)-beta-d-Glcp when linked to HepIII. The LPS of NTHi strain 1124 contained sialylated glycoforms that were identified by CE-ESI-MS/MS. A common sialylated structure in H. influenzae LPS is sialyllactose linked to HepIII. This structure exists in strain 1124. However, results for the lpsA mutant indicate that sialyllactose extends from HepI as well, a molecular environment for sialyllactose in H. influenzae that has not been reported previously. In addition, the LPS was found to carry phosphorylcholine, O-linked glycine, and a third PEA group which was linked to O3 of HepIII.
Capillary electrophoresis (CE) is a high-resolution separation technique that has been widely used for trace analysis in biological samples. On-line capillary electrophoresis-electrospray mass spectrometry (CE-MS) was developed for the analysis of lipopolysaccharide (LPS) glycoforms from the gram-negative bacteria, Haemophilus influenzae. In this paper, we report on the application of CE-MS to characterize structural differences in O-deacylated LPS samples from H. influenzae strains Rd 11.7 and 375.1. The resolution capability of on-line CE-MS was first demonstrated by analysis of a complex LPS mixture from H. influenzae strain Rd 11.7. This strain contains a mixture of isomeric glycoforms differing in the number and positions of hexose moieties. Sialic acid containing glycoforms were also determined. Structural features of LPS from a lic1 mutant of H. influenzae strain 375 (375.1) were studied using on-line CE-MS/MS. With the separation provided by CE, two isomeric glycoforms differing in the location of phosphoethanolamine substituents were characterized by tandem mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.