Given that many operational satellite sensors are not calibrated, while a handful of research sensors are, cross-calibration between the two types of sensor is a cost-effective means of calibration. A new method of sensor crosscalibration is demonstrated here using the Chinese Multi-channel Visible Infrared Scanning radiometer (MVIRS) and the US Moderate Resolution Imaging Spectrometer (MODIS). MVIRS has six channels, equivalent to the current National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and four additional ones for remote sensing of ocean colour and moisture. The MVIRS on-board China's polar-orbiting meteorological satellite (FY-1D) was launched on 15 May 2002 with an earlier overpass time than Terra. The sensor has no on-board calibration assembly. This study attempts to calibrate MVIRS against the well-calibrated MODIS, by taking a series of measures to account for their differences. Clearsky measurements made from the two sensors in July-October 2002 were first collocated. Using the 6S radiative transfer model, MODIS reflectances measured at the top-of-the atmosphere were converted into surface reflectances. They were corrected to the viewing geometry of the MVIRS using the bidirectional reflectance distribution function (BRDF) measured on the ground. The spectral response functions of the two sensors were employed to account for spectral discrepancies. After these corrections, very close linear correlations were found between radiances estimated from the MODIS and the digital readings from the MVIRS, from which the calibration gains were derived. The gains differ considerably from the pre-launch values and are subject to degradation over time. The calibration accuracy is estimated to be less than 5%, which is compatible to that obtained by the more expensive vicarious calibration approach.
Wear maps ofa SiaN 4 ceramic cutting tool for cutting 1045 plain carbon and 302 stainless steels are produced in this paper. Through the systematic turning tests, the optimum cutting regions were determined on the wear maps of a two-dimensional diagram of cutting speed and feed rate. They are important for selecting the appropriate cutting parameters for a ceramic tool when cutting different workpieces. The wear morphologies and wear mechanisms for the different regions were investigated by scanning electron microscopy (SEM) with energy dispersive analysis of x-ray (EDX), and the corresponding cutting temperature distributions were measured by a thermal video system. Based on the experiment results, the relationships between cutting conditions, cutting temperatures, and wear mechanisms were discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.