The effects of somatic cell count and stage of lactation on the yield and quality of Cheddar cheese were investigated. Cheese was manufactured in a pilotscale factory using milk of low bulk milk cell count (BMCC) from herds in early (LE) and late (LL) lactation, and milk of high BMCC from herds in early (HE) and late (HL) lactation. The deleterious effect of an elevated BMCC on product yield and quality in late lactation was clear. Cheese made from LL milk was significantly superior to that made from HL milk for most yield and quality characteristics measured.Stage of lactation also affected cheese yield and quality, as evidenced by the lower recovery of fat and poorer flavour score for cheese from LL milk compared with that manufactured from LE milk. The observed differences could be explained largely by differences in raw milk composition. We conclude that the effect of stage of lactation was magnified by an elevated BMCC, and that many of the problems encountered when processing late season milk could be overcome by containing mastitis at this time.Bulk milk cell count (BMCC) is a measure of the number of somatic cells in bulk milk and is a commonly used and reliable indicator of the incidence of subclinicalmastitis within a dairy herd (Eberhart et al. 1982). Such subclinical mastitis is usually caused by pathogenic bacteria colonizing the teat cistern (Anon. 1971), and the resulting inflammation can have marked effects on gross milk composition. Damage sustained by the mammary epithelium as a result of mastitis leads to the reduced synthesis and secretion of milk components synthesized de novo. At the same time, the tight junctions between the mammary epithelial cells often rupture, allowing the free influx of serum components from the extracellular fluid into the milk (Kitchen, 1981). These components include a range of hydrolytic enzymes which further modify milk composition via the breakdown of casein and fat (Grieve & Kitchen, 1985). Thus, during mastitis there are generally decreases in concentrations of milk fat, lactose and casein, and increases in concentrations of whey proteins (Auldist et al. 1995).The precise effects of BMCC on the yield and quality of dairy products are less well known. Some researchers have observed the poor coagulating properties of t Present address and correspondence: Dairying
SummaryThe influence of diet quality and stage of lactation on Cheddar cheese moisture and yield were segregated and the effects of other potential variables (cow breed, milk protein genotype, age and level of mastitis) were minimized. An experiment was conducted using milk of cows in mid lactation or late lactation fed on high or low quality diets. Increased moisture in cheese was largely due to the influence of cow diet. Milk from cows given high quality diets produced lower moisture cheese. Cheese yield was influenced by diet and stage of lactation. Cows in late lactation fed on high quality diets always gave milks yielding the most cheese. Fat and protein recovery in cheese was not influenced by diet or stage of lactation. The results suggest that low quality diets may induce changes in the complex interactions of milk proteins and other components that affect cheesemaking.
Extending the lactation length of dairy cows beyond the traditional 10 mo toward lactations of up to 22 mo has attracted interest in the pasture-based seasonal dairying systems of Australia and New Zealand as a way of alleviating the need for cows to conceive during peak lactation, such as is required to maintain seasonally concentrated calving systems. Lactation lengths longer than 10 mo instead provide cows with more time to cycle and conceive after parturition and may therefore be more suitable systems for high-producing Holstein-Friesian cows. Before recommending such systems there is a need to evaluate the effects of long lactations on the suitability of milk for manufacture of high-quality dairy products. In the current experiment, the composition of milk from cows entering the second half of a 22-mo lactation was examined in detail and compared with that from cows undergoing a traditional 10-mo lactation. On 2 occasions, coagulation properties were measured using low amplitude strain oscillation rheometry, and Cheddar cheese was made in 250-L pilot-scale vats. Results showed that milk from extended lactations had higher concentrations of fat and protein than cows undergoing 10-mo lactations under similar management conditions and at the same time of year. The ratio of casein to true protein was not affected by lactation length and neither were the proportions of individual caseins. The increase in milk solids during extended lactations translated into a more rapid rate of coagulation and ultimately a firmer curd on one of the two occasions. Milk from extended lactations yielded more cheese per 100 kg of milk, and there were few differences in the composition or organoleptic properties of the cheese. These data are the first to show that pasture-based dairy industries could embrace the use of extended lactations without compromising the core business of producing high-quality dairy products.
The effects of supplementing a basal diet of silage and hay with increasing amounts of harvested spring pasture, or with lupin and wheat, on the composition of milk and the consequent effects on cheese composition and yield were investigated in an indoor feeding study. Milk was collected from five groups of eight cows in mid lactation offered different diets and manufactured into Cheddar cheese on a pilot scale. Milk from cows given the lupin–wheat (LW) and the high pasture level (HP) diets produced low moisture cheese. Cheese produced with milk from cows given the control diet was high in moisture content compared with that made with milk from cows offered the LW diet. Cheese yields from the milk of cows offered the HP and LW diets were greater than from the milk of cows on the control diet, and were associated with the higher casein concentrations of these milks. Casein number was higher in milk from diets supplemented with pasture but was not an indicator of the functional properties of milk that affected cheese moisture. The proportion of β-casein in milk from cows offered the HP diet was higher and that of γ-casein lower than in milk from cows given the LW supplement, although cheese moisture content was similar with both diets. Milk from cows offered the HP diet had a greater inorganic P concentration than that from cows given the LW diet, although the dietary intake of P was higher for the LW diet. The significance of the effect of dietary P intake on the concentration of inorganic P in milk and hence its suitability for cheesemaking was apparent when dietary P intake was low, as shown in milk produced by cows offered the control diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.