Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).
Although awareness of familial hypercholesterolemia (FH) is increasing, this common, potentially fatal, treatable condition remains underdiagnosed. Despite FH being a genetic disorder, genetic testing is rarely used. The Familial Hypercholesterolemia Foundation convened an international expert panel to assess the utility of FH genetic testing. The rationale includes the following: 1) facilitation of definitive diagnosis; 2) pathogenic variants indicate higher cardiovascular risk, which indicates the potential need for more aggressive lipid lowering; 3) increase in initiation of and adherence to therapy; and 4) cascade testing of at-risk relatives. The Expert Consensus Panel recommends that FH genetic testing become the standard of care for patients with definite or probable FH, as well as for their at-risk relatives. Testing should include the genes encoding the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9); other genes may also need to be considered for analysis based on patient phenotype. Expected outcomes include greater diagnoses, more effective cascade testing, initiation of therapies at earlier ages, and more accurate risk stratification.
In hypercholesterolemia, impaired nitric oxide activity has been associated with increased nitric oxide degradation by oxygen radicals. Deficiency of tetrahydrobiopterin, an essential cofactor of nitric oxide synthase, causes both impaired nitric oxide activity and increased oxygen radical formation. In this study we tested whether tetrahydrobiopterin deficiency contributes to the decreased nitric oxide activity observed in hypercholesterolemic patients. Therefore, L -mono-methylarginine to inhibit basal nitric oxide activity, serotonin to stimulate nitric oxide activity, and nitroprusside as endothelium-independent vasodilator were infused in the brachial artery of 13 patients with familial hypercholesterolemia and 13 matched controls. The infusions were repeated during coinfusion of L -arginine (200 g/kg/min), tetrahydrobiopterin (500 g/min), or the combination of both compounds. Forearm vasomotion was assessed using forearm venous occlusion plethysmography and expressed as ratio of blood flow between measurement and control arm (M/C ratio). Tetrahydrobiopterin infusion alone did not alter M/C ratio.Both the attenuated L -mono-methyl-arginine-induced vasoconstriction as well as the impaired serotonin-induced vasodilation were restored in patients during tetrahydrobiopterin infusion. Tetrahydrobiopterin had no effect in controls. In conclusion, this study demonstrates restoration of endothelial dysfunction by tetrahydrobiopterin suppletion in hypercholesterolemic patients. ( J. Clin. Invest. 1997. 99:41-46.)
There is a significant relation between variation at the CETP gene locus and the progression of coronary atherosclerosis that is independent of plasma HDL cholesterol levels and the activities of lipolytic plasma enzymes. This common DNA variant appears to predict whether men with coronary artery disease will benefit from treatment with pravastatin to delay the progression of coronary atherosclerosis.
Background-Impaired nitric oxide (NO) activity is an early event in the pathogenesis of cardiovascular disease, resulting from either reduced NO formation or increased NO degradation. Administration of tetrahydrobiopterin (BH 4 ), an essential cofactor for NO production, could restore NO activity in familial hypercholesterolemia (FH). Because folates have been suggested to stimulate endogenous BH 4 regeneration, we hypothesized that administration of 5-methyltetrahydrofolate (5-MTHF, the active circulating form of folate) might improve NO formation in FH. Methods and Results-We studied the effects of 5-MTHF on NO bioavailability in vivo in 10 patients with FH and 10 matched control subjects by venous occlusion plethysmography, using serotonin and nitroprusside as endotheliumdependent and -independent vasodilators. In vitro, we investigated the effect of 5-MTHF on NO production by recombinant endothelial NO synthase (eNOS) by use of [ 3 H]arginine to [ 3 H]citrulline conversion. We also studied the effects of 5-MTHF on superoxide generation by eNOS and xanthine oxidase (XO) by use of lucigenin chemiluminescence. The impaired endothelium-dependent vasodilation in FH (63% versus 90% in control subjects) could be reversed by coinfusion of 5-MTHF (117% vasodilation), whereas 5-MTHF had no significant effect on endothelium-dependent vasodilation in control subjects. 5-MTHF did not influence basal forearm vasomotion or endothelium-independent vasodilation. 5-MTHF had no direct effect on in vitro NO production by eNOS. However, we did observe a dose-dependent reduction in both eNOS-and XO-induced superoxide generation. Conclusions-These results show that the active form of folic acid restores in vivo endothelial function in FH. It is suggested from our in vitro experiments that this effect is due to reduced catabolism of NO. (Circulation. 1998;97:237-241.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.