Abstract. We examine the various methods and parameters in common use for quantifying and reporting surface topographic "roughness." It is shown that scale-dependent roughness parameters are almost always required, though not widely used. We suggest a method of standardizing the parameters that are computed and reported so that topographic data gathered by different workers using different field techniques can be directly and easily intercompared. We illustrate the proposed method by analyzing topographic data from 60 different surfaces gathered by five different groups and examine the information for common features. We briefly discuss the implications of our analysis for studies of planetary surface roughness, lander safety, and radar remote sensing modeling and analysis.
We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.