Abstract. We examine the various methods and parameters in common use for quantifying and reporting surface topographic "roughness." It is shown that scale-dependent roughness parameters are almost always required, though not widely used. We suggest a method of standardizing the parameters that are computed and reported so that topographic data gathered by different workers using different field techniques can be directly and easily intercompared. We illustrate the proposed method by analyzing topographic data from 60 different surfaces gathered by five different groups and examine the information for common features. We briefly discuss the implications of our analysis for studies of planetary surface roughness, lander safety, and radar remote sensing modeling and analysis.
Voyager stereoimages of Euboea Montes, Io, indicate that this mountain formed when a large crustal block was uplifted 10.5 kilometers and tilted by approximately 6 degrees. Uplift triggered a massive slope failure on the northwest flank, forming one of the largest debris aprons in the solar system. This slope failure probably involved relatively unconsolidated layers totaling approximately 2 kilometers in thickness, overlying a rigid crust (or lithosphere) at least 11 kilometers thick. Mountain formation on Io may involve localized deep-rooted thrust faulting and block rotation, due to compression at depth induced during vertical recycling of Io's crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.