The oxidized derivative of graphene named Graphene oxide (GO) are attractive materials as optoelectronic devices due to their optical response in the mid-infrared wavelength spectral range; however, very large-scaled synthesis methods and optical characterization are required. Here, GO thin films are fabricated on quartz by implementing simple two-step pyrolysis processes by using renewable bamboo as source material. The effect of carbonization temperature (T CA) on the compositional, vibrational, and optoelectronic properties of the system are investigated. It was found that as T CA increases, graphite conversion rises, oxygen coverage reduces from 17 % to 4 %, and the band-gap energy monotonically decreases from 0.30 to 0.11 eV. Theoretical predictions of the energy band-gap variations with the oxide coverage obtained via density functional theory (DFT) computational simulations agree well with the experimental results, providing evidence of oxygen-mediated charge-transport scattering. Interestingly, in the optical response, increased T CA results in a blue-shift of the absorption and the absorbance spectrum can be correlated with the large size distribution of the graphitic nano-crystals of the samples. These results suggest that graphene oxide-bamboo pyroligneous acid (GO) thin films exhibit optoelectronic response useful in developing photodetectors and emitter devices in the mid-infrared (MIR) spectral range.
GaAs buffer layer in InAs/GaAs quantum dots (QDs) was investigated by Photoreflectance (PR) technique at 300 K. PR spectra obtained were compared with commercial GaAs sample PR spectra, and they were analyzed by using the derivative Lorentzian functions as proposed by Aspnes in the middle field regimen. PR spectra in InAs/GaAs QDs sample was attributed to the photoreflectance response in the GaAs buffer layer. Band bending energies were calculated for laser intensities from 1 mW to 21 mW. The photoreflectance comparative study in the samples was realized considering the difference in the parameters: electric field on the surface, broadening parameter, energy gained by photoexcited carriers due to the electric field applied, frequency of light and heavy holes and band bending energy values. The results suggest that the presence of InAs quantum dots increases the light and heavy holes frequencies and the band bending energy values; and decreases the electric field on the surface, the broadening parameter and the energy gained by photoexcited carriers. We found that InAs QDs presence modifies the surface electrical field around one order of magnitude in the GaAs buffer layer and this behavior can be attributed to surface passivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.