High throughput fluorescence polarization (FP) assays are described that offer a nonradioactive, homogeneous, and low-cost alternative to radioligand binding assays for cell surface receptors (G protein-coupled receptors and ligand-gated ion channels). FP assays were shown to work across a range of both peptide (vasopressin V1a and delta-opioid) and nonpeptide (beta1-adrenoceptor, 5-hydroxytryptamine3) receptors. Structure-activity relationships were investigated at beta1-receptors and were found to be consistent with radioligand binding assays. FP was shown to tolerate up to 5% DMSO with no loss in sensitivity or signal window. From a random set of 1,280 compounds, 1.9% were found to significantly interfere with FP measurement. If fluorescent or quenching compounds were eliminated (3% of all compounds), less than 0.4% of compounds were found to interfere with FP measurement. Assays could be run in 384-well plates with little loss of signal window or sensitivity compared to 96-well plate assays. New advances in FP measurement have therefore enabled FP to offer a high throughput alternative to radioligand binding for cell surface receptors.
These results indicate that stimulation of adenosine A3 receptors both enhances degranulation in vitro and directly produces degranulation of rat mast cells in vivo.
1 An investigation has been made into the 5-hydroxytryptamine (5-HT) receptor mediating relaxation of rat oesophagus in preparations precontracted with carbachol.2 In tissues treated with pargyline (100pM) and in the presence of corticosterone (30OUM) and cocaine (30 pM) the potency of 5-HT and 5-methoxytyramine (5-MeOT) was not changed but the maximum response to these agonists was reduced. Thus there was no evidence of metabolism and/or uptake through an amine depleting mechanism. 3 The relaxant concentration-effect curves to 5-HT were shifted to the left in a concentration-related manner by isobutylmethylxanthine (1 and 10pM), suggesting the involvement of adenosine 3':5'-cyclic monophosphate in these responses.
Background and purpose: Human and rodent P2X7 receptors exhibit differences in their sensitivity to antagonists. In this study we have cloned and characterized the dog P2X7 receptor to determine if its antagonist sensitivity more closely resembles the human or rodent orthologues. Experimental approach: A cDNA encoding the dog P2X7 receptor was isolated from a dog heart cDNA library, expressed in U-2 OS cells using the BacMam viral expression system and characterized in electrophysiological, ethidium accumulation and radioligand binding studies. Native P2X7 receptors were examined by measuring ATP-stimulated interleukin-1b release in dog and human whole blood. Key results: The dog P2X7 receptor was 595 amino acids long and exhibited high homology (>70%) to the human and rodent orthologues although it contained an additional threonine at position 284 and an amino acid deletion at position 538. ATP possessed low millimolar potency at dog P2X7 receptors. 2′-&3′-O-(4benzoylbenzoyl) ATP had slightly higher potency but was a partial agonist. Dog P2X7 receptors possessed relatively high affinity for a number of selective antagonists of the human P2X7 receptor although there were some differences in potency between the species. Compound affinities in human and dog blood exhibited a similar rank order of potency as observed in studies on the recombinant receptor although absolute potency was considerably lower. Conclusions and implications: Dog recombinant and native P2X7 receptors display a number of pharmacological similarities to the human P2X7 receptor. Thus, dog may be a suitable species for assessing target-related toxicity of antagonists intended for evaluation in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.