A self-consistent set of equations for the one-electron self-energy in the
ladder approximation is derived for the attractive Hubbard model in the
superconducting state. The equations provide an extension of a T-matrix
formalism recently used to study the effect of electron correlations on
normal-state properties. An approximation to the set of equations is solved
numerically in the intermediate coupling regime, and the one-particle spectral
functions are found to have four peaks. This feature is traced back to a peak
in the self-energy, which is related to the formation of real-space bound
states. For comparison we extend the moment approach to the superconducting
state and discuss the crossover from the weak (BCS) to the intermediate
coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.
We have applied the Fast Fourier transform (FFT), which allows to compute efficiently convolution sums, to solve the set of self-consistent T-matrix equations to get the Green function of the two dimensional attractive-U Hubbard model below Tc, extending previous calculations of the same authors. Using a constant order parameter ∆(T ), we calculated Tc as a function of electron density and interaction strength U . These global results deviate from the BCS behavior remarkably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.