Humans are unable to synthesise L-ascorbic acid (L-AA, ascorbate, vitamin C), and are thus entirely dependent upon dietary sources to meet needs. In both plant and animal metabolism, the biological functions of L-ascorbic acid are centred around the antioxidant properties of this molecule. Considerable evidence has been accruing in the last two decades of the importance of L-AA in protecting not only the plant from oxidative stress, but also mammals from various chronic diseases that have their origins in oxidative stress. Evidence suggests that the plasma levels of L-AA in large sections of the population are sub-optimal for the health protective effects of this vitamin.Until quite recently, little focus has been given to improving the L-AA content of plant foods, either in terms of the amounts present in commercial crop varieties, or in minimising losses prior to ingestion. Further, while L-AA biosynthesis in animals was elucidated in the 1960s, 1 it is only very recently that a distinct biosynthetic route for plants has been proposed. 2 The characterisation of this new pathway will undoubtedly provide the necessary focus and impetus to enable fundamental questions on plant L-AA metabolism to be resolved.This review focuses on the role of L-AA in metabolism and the latest studies regarding its biosynthesis, tissue compartmentalisation, turnover and catabolism. These inter-relationships are considered in relation to the potential to improve the L-AA content of crops. Methodology for the reliable analysis of L-AA in plant foods is brie¯y reviewed. The concentrations found in common food sources and the effects of processing, or storage prior to consumption are discussed. Finally the factors that determine the bioavailability of L-AA and how it may be improved are considered, as well as the most important future research needs.
Cu appears to have many important functional roles in the body that apparently relate, among others, to the maintenance of immune function, bone health and haemostasis. Some have suggested a role for long-term marginal Cu deficiency in the aetiology of a number of degenerative diseases. Accurate diagnosis of marginal Cu deficiency, however, has remained elusive despite an increased understanding of the biochemistry of Cu and its physiological roles in the body. Traditional markers of Cu status, such as serum Cu and caeruloplasmin protein concentrations are insensitive to subtle changes in Cu status. Cu-containing enzymes, such as Cu–Zn-superoxide dismutase, cytochromecoxidase and diamine oxidase, may be more reliable but evidence to date is not conclusive. Development of markers sensitive to marginal Cu status is essential before conclusions can be drawn concerning the risks of long-term intake of suboptimal dietary Cu. As Cu appears to be essential for maintenance of immune function, activities of specific immunological markers, altered in Cu deficiency, offer alternatives. This review evaluates a selection of immunological markers that could be considered potentially sensitive markers of marginal Cu status. The indices of immune function reviewed are neutrophil function, interleukin 2 production, blastogenic response to mitogens and lymphocyte subset phenotyping.
Total energy expenditure (TEE) was measured simultaneously in 14 free-living adults over 15 d by the doubly labeled water (DLW) method and for 2-4 separate days by heart-rate (HR) monitoring. Individual curves for HR vs oxygen consumption (VO2) were obtained and an HR (FLEX HR: 97 +/- 8 beats/min, range 84-113 beats/min) that discriminated between rest and activity was identified. Calibration curves were used to assign an energy value to daytime HR above FLEX HR. Below FLEX HR energy expenditure was taken as resting metabolism. Sleeping energy expenditure was assumed to be equal to basal metabolic rate. Average HR TEE (12.99 +/- 3.83 MJ/d) and average DLW TEE (12.89 +/- 3.80 MJ/d) were similar. HR TEE discrepancies ranged from -22.2% to +52.1%, with nine values lying within +/- 10% of DLW TEE estimates. The FLEX HR method provides a close estimation of the TEE of population groups. However, an increased number of sampling days may improve the precision of individual estimates of TEE.
The purpose of this study was to analyze the relationships between physical activity (ACT), including sports participation (SP) and antecedent risk factors for coronary heart disease (CHD), in a representative sample of adolescents from Northern Ireland, a region of high coronary mortality. Biological and behavioral risk factors were measured in a random sample of 1015 school children aged 12 and 15 yr. ACT and SP were assessed by self-report questionnaire, and relationships with biological risk factors were analyzed with stepwise multiple linear regression after controlling for potential confounders. Results showed that in 15-yr-old males ACT was beneficially associated with systolic blood pressure (P < 0.05), lipid profile, and cardiorespiratory fitness (both P < 0.01). In 15-yr-old females, SP was associated beneficially with fatness and cardiorespiratory fitness. Odds ratios calculated from logistic regression revealed that for the older children, a relatively small drop (-20%) in ACT (boys) or SP (girls) was significantly related to the probability of exposure to multiple risk factors. Overall, relationships were stronger for males rather than females and for older rather than younger children. This study provides further evidence for beneficial associations between ACT, SP, and CHD risk status in adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.