We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements
Isolated in-plane wires on Si(001) are promising nanostructures for quantum transport applications. They can be fabricated in a catalyst-free process by thermal annealing of self-organized Si1−xGex hut clusters. Here, we report on the influence of composition and small substrate miscuts on the unilateral wire growth during annealing at 570 °C. The addition of up to 20% of Si mainly affects the growth kinetics in the presence of energetically favorable sinks for diffusing Ge atoms, but does not significantly change the wire base width. For the investigated substrate miscuts of <0.12°, we find geometry-induced wire tapering, but no strong influence on the wire lengths. Miscuts <0.02° lead to almost perfect quantum wires terminated by virtually step-free {105} and {001} facets over lengths of several 100 nm. Generally, the investigated Si1−xGex wires are metastable: Annealing at ≥600 °C under otherwise identical conditions leads to the well-known coexistence of Si1−xGex pyramids and domes.
We investigate the growth of self-assembled Ge nanostructures on top of embedded Ge nanowires on Si(001) substrates. Ge nanostructures, such as nanodashes, nanodumbbells, and dot chains are observed simply by tuning the growth temperature and thickness of the Si spacer between the Ge layers. The self-assembly process is governed by the surface strain fields generated by the embedded Ge nanowires and is well-described by our theoretical calculations. The catalyst-free and horizontal growth of such Ge nanostructures directly on Si(001) is attractive for investigating exotic transport properties through Si/Ge-based quantum devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.