Animating an articulated 3D character requires the specification of its interior skeleton structure which defines how the skin surface is deformed during animation. Currently this task is to a large extent accomplished manually, which consumes a large amount of animators' time. This paper presents an automatic rigging method making use of a new geometry entity called the 3D silhouette. The first step is to extract a coarse 3D curve skeleton and some skeletal joints of a character. This curve skeleton is then refined with a perpendicular silhouette. According to the connectivity of the skeletal joints, the hierarchical animation skeleton is finally constructed. By avoiding complicated computation such as voxelization and pruning, this method is simple and efficient, much faster than existing methods. It proves very useful for quick animation production, with applications including games design and prototype graphical systems.
The deviations of machined surfaces of high-precision mechanical components are one of the major error items that affect the precision, and hence the performance, of the components. However, industrial standards concerning profile deviations are still not available for many components with curved surfaces, due to lack of accurate inspection and error evaluation methods, although general purpose coordinate measuring machines are widely available. Proposed in this paper are two such methods that detect and process surface form deviations using coordinate measuring machines. Possible measurement error sources of these methods have been investigated and necessary remedies suggested. Both are seen to lead to higher inspection accuracy than the methods reported in the literature. Experiments were designed and carried out to confirm and illustrate the validity of these proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.