The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the temporal stability and imaging protocols for the specific formulation used.
Purpose: To quantitatively evaluate a 3D patient specific QA tool using 2D film and 3D Presage dosimetry. Methods: A brain IMRT case was delivered to Delta4, EBT2 film and Presage plastic dosimeter. The film was inserted in the solid water slabs at 7.5cm depth for measurement. The Presage dosimeter was inserted into a head phantom for 3D dose measurement. Delta4's Anatomy software was used to calculate the corresponding dose to the film in solid water slabs and to Presage in the head phantom. The results from Anatomy were compared to both calculated results from Eclipse and measured dose from film and Presage to evaluate its accuracy. Using RIT software, we compared the “Anatomy” dose to the EBT2 film measurement and the film measurement to ECLIPSE calculation. For 3D analysis, DICOM file of “Anatomy” was extracted and imported to CERR software, which was used to compare the Presage dose to both “Anatomy” calculation and ECLIPSE calculation. Gamma criteria of 3% – 3mm and 5% – 5mm was used for comparison. Results: Gamma passing rates of film vs “Anatomy”, “Anatomy” vs ECLIPSE and film vs ECLIPSE were 82.8%, 70.9% and 87.6% respectively when 3% – 3mm criteria is used. When the criteria is changed to 5% – 5mm, the passing rates became 87.8%, 76.3% and 90.8% respectively. For 3D analysis, Anatomy vs ECLIPSE showed gamma passing rate of 86.4% and 93.3% for 3% – 3mm and 5% – 5mm respectively. The rate is 77.0% for Presage vs ECLIPSE analysis. The Anatomy vs ECLIPSE were absolute dose comparison. However, film and Presage analysis were relative comparison Conclusion: The results show higher passing rate in 3D than 2D in “Anatomy” software. This could be due to the higher degrees of freedom in 3D than in 2D for gamma analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.