Hydrodynamic lubrication is studied for both shear thinning and viscoelastic polymer solutions. We find that elasticity, notably strong normal stresses, does not change the friction significantly for the range of parameters tested in this manuscript. Shear-thinning properties, on the other hand, do change the formation of the lubricating layer thickness and the dependence of friction on velocity relative to Newtonian fluids. A hydrodynamic model that includes shear thinning is developed and compared to experimental data. The model describes the dependence on lubrication parameters well, but underestimates the lubricating layer thickness by a constant factor of roughly 1.5. The theory allows us to define a Hersey-like number for shear-thinning fluids that describes the lubricating layer thickness as a result of the balance between normal load and viscous force. For each tested liquid it succeeds in collapsing friction measurements onto the same curve. The friction analysis for both lubrication theory and experiments then reveals that shear thinning mainly changes the layer thickness, which is the main determinant of the friction coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.