Background:The effect of active workstation implementation on speech quality in a typical work setting remains unclear.Purpose:To assess differences between sitting, standing, and walking on energy expenditure and speech quality.Methods:Twenty-two females and 9 males read silently, read aloud, and spoke spontaneously during 3 postural conditions: sitting, standing, and walking at 1.61 km/h. Oxygen consumption (VO2), blood pressure, and rating of perceived exertion (RPE) were obtained during each condition. Expert listeners, blinded to the purpose of the study and the protocol, assessed randomized samples of the participants’ speech during reading and spontaneous speech tasks in 3 postural conditions.Results:Standing elevated metabolic rate significantly over sitting (3.3 ± 0.7 vs. 3.6 ± 0.9 ml·kg−1·min−1). Walking at 1.6 km/h while performing the respective tasks resulted in VO2 values of 7.0 to 8.1 ml·kg−1·min−1. There was no significant difference in the average number of syllables included in each speech sample across the conditions. The occurrence of ungrammatical pauses was minimal and did not differ across the conditions.Conclusion:The significant elevation of metabolic rate in the absence of any deterioration in speech quality or RPE support the utility of using active work stations to increase physical activity (PA) in the work environment.
Prior work identified a novel association between bone robustness and porosity, which may be part of a broader interaction whereby the skeletal system compensates for the natural variation in robustness (bone width relative to length) by modulating tissue-level mechanical properties to increase stiffness of slender bones and to reduce mass of robust bones. To further understand this association, we tested the hypothesis that the relationship between robustness and porosity is mediated through intracortical, BMU-based (basic multicellular unit) remodeling. We quantified cortical porosity, mineralization, and histomorphometry at two sites (38 and 66% of the length) in human cadaveric tibiae. We found significant correlations between robustness and several histomorphometric variables (e.g., % secondary tissue [R2 = 0.68, p < 0.004], total osteon area [R2=0.42, p<0.04]) at the 66% site. Although these associations were weaker at the 38% site, significant correlations between histological variables were identified between the two sites indicating that both respond to the same global effects and demonstrate a similar character at the whole bone level. Thus, robust bones tended to have larger and more numerous osteons with less infilling, resulting in bigger pores and more secondary bone area. These results suggest that local regulation of BMU-based remodeling may be further modulated by a global signal associated with robustness, such that remodeling is suppressed in slender bones but not in robust bones. Elucidating this mechanism further is crucial for better understanding the complex adaptive nature of the skeleton, and how inter-individual variation in remodeling differentially impacts skeletal aging and an individuals’ potential response to prophylactic treatments.
Introduction:We developed an economical three-dimensional printed and casted simulator of the hand for the training of percutaneous pinning. This simulator augments the traditional “See one, do one, teach one” training model.Methods:To evaluate the simulator, five expert orthopaedic surgeons were recruited to perform percutaneous pinning on the simulator and then to complete a questionnaire on its realism and expected usefulness. Evaluation was based on responses to multiple-choice questions and a Likert-type scale.Results:All subjects expressed that the tactile hand simulator is useful for residency training. They would recommend the simulator to their colleagues and indicated interest in testing future iterations. Subjects rated highly the realism of the material, the purchase of the pin, and the cortical–cancellous bone interface.Conclusion:The learning of tactile skills in addition to visual cues on a tactile simulator is expected to benefit residents. It provides a low-cost and low-risk environment outside the operating room for residents to hone their skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.