Restraint theory has been used to model the process that produces binge eating. However, there is no satisfactory explanation for the tendency of restrained eaters (REs) to engage in counterregulatory eating, an ostensible analogue of binge eating. Using functional magnetic resonance imaging (fMRI), the authors investigated brain activation of normal weight REs (N = 9) and unrestrained eaters (UREs; N = 10) when fasted and fed and viewing pictures of highly and moderately palatable foods and neutral objects. When fasted and viewing highly palatable foods, UREs showed widespread bilateral activation in areas associated with hunger and motivation, whereas REs showed activation only in the cerebellum, an area previously implicated in low-level processing of appetitive stimuli. When fed and viewing high palatability foods, UREs showed activation in areas related to satiation and memory, whereas REs showed activation in areas implicated in desire, expectation of reward, and goal-defined behavior. These findings parallel those from behavioral research. The authors propose that the counterintuitive findings from preload studies and the present study are due to the fact that REs are less hungry than UREs when fasted and find palatable food more appealing than UREs when fed.
BackgroundWorking memory (WM) often is impaired in autism spectrum disorder (ASD). Such impairment may underlie core deficits in cognition and social functioning. Transcranial direct current stimulation (tDCS) has been shown to enhance WM in both healthy adults and clinical populations, but its efficacy in ASD is unknown. We predicted that bifrontal tDCS would improve WM performances of adults with high-functioning autism during active stimulation compared to sham stimulation and that such enhancement would generalize to an untrained task.MethodsTwelve adults with high-functioning ASD engaged in a battery of WM tasks that included backward spatial span, backward digit span, spatial n-back and letter n-back. While engaged, 40 min of 1.5 mA bifrontal stimulation was applied over the left and the right dorsolateral prefrontal cortices (DLPFC). Using a single-blind crossover design, each participant received left anodal/right cathodal stimulation, right anodal/left cathodal stimulation, or sham stimulation, in randomized counterbalanced order on three separate days. Following tDCS, participants again engaged in letter and spatial n-back tasks before taking the Brief Test of Attention (BTA). We used repeated-measures ANOVA to compare overall performance on the WM battery as measured by a composite of z-scores for all five measures. Post hoc ANOVAs, t tests, Friedman’s tests, and Wilcoxon signed-rank tests were used to measure the online and offline effects of tDCS and to assess performances on individual measures.ResultsCompared to sham stimulation, both left DLPFC anodal stimulation (t 11 = 5.4, p = 0.0002) and right DLPFC anodal stimulation (t 11 = 3.57, p = 0.004) improved overall WM performance. Left anodal stimulation (t 11 = 3.9, p = 0.003) and right anodal stimulation (t 11 = 2.7, p = 0.019) enhanced performances during stimulation. Enhancement transferred to an untrained task 50 min after right anodal stimulation (z 11 = 2.263, p = 0.024). The tasks that showed the largest effects of active stimulation were spatial span backward (z 11 = 2.39, p = 0.017) and BTA (z 11 = 2.263, p = 0.024).ConclusionsIn adults with high-functioning ASD, active bifrontal tDCS given during WM tasks appears to improve performance. TDCS benefits also transferred to an untrained task completed shortly after stimulation. These results suggest that tDCS can improve WM task performance and could reduce some core deficits of autism.Trial registration NCT01602263
Dietary restraint is heavily influenced by affect, which has been independently related to asymmetrical activation in the prefrontal cortex (prefrontal asymmetry) in electroencephalograph (EEG) studies. In normal weight individuals, dietary restraint has been related to prefrontal asymmetry; however, this relationship was not mediated by affect. This study was designed to test the hypotheses that, in an overweight and obese sample, dietary restraint as well as binge eating, disinhibition, hunger, and appetitive responsivity would be related to prefrontal asymmetry independent of affect at the time of assessment. Resting EEG recordings and self-report measures of overeating and affect were collected in 28 overweight and obese adults. Linear regression analyses were used to predict prefrontal asymmetry from appetitive measures while controlling for affect. Cognitive restraint and binge eating were not associated with prefrontal asymmetry. However, disinhibition, hunger, and appetitive responsivity predicted left-, greater than right-, sided prefrontal cortex activation independent of affect. Findings in this study add to a growing literature implicating the prefrontal cortex in the cognitive control of dietary intake. Further research to specify the precise role of prefrontal asymmetry in the motivation toward, and cessation of, feeding in obese individuals is encouraged.
In the century since the Gestalt psychologists introduced insight as a component process of perception and problem solving, researchers have studied the phenomenological, behavioral, and neural components of insight. Whether and how insight is different from other types of problem solving, such as analysis, has been a topic of considerable interest and some contention. In this chapter we develop a working definition of insight and detail the history of insight research by focusing on questions about the influence of the problem solver's prior knowledge, the origins and significance of representational change, and the roles of impasse and incubation. We also review more recent investigations of the neurological correlates of insight, discuss neurobehavioral states that facilitate or inhibit insightful problem solving, and highlight new methods and techniques that are proving useful in extending our knowledge of insight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.