Bovine mastitis is the most significant economic drain on the worldwide dairy industry. Concerns regarding poor cure rates, emergence of bacterial resistance, and residues in milk necessitate development of alternative therapeutic approaches to antibiotics for treatment of mastitis. A variety of free fatty acids and their monoglycerides have been reported to exert antimicrobial activity against a wide range of microorganisms. The objective of our study was to examine the efficacy of caprylic acid, a short-chain fatty acid, and its monoglyceride, monocaprylin, to inactivate common mastitis pathogens, including Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli. Milk samples containing 50 mM or 100 mM caprylic acid, and 25 mM or 50 mM monocaprylin were inoculated separately with a 3-isolate mixture of each of the 5 pathogens, and incubated at 39 degrees C. Populations of surviving bacteria were determined at 0 min, 1 min, 6 h, 12 h, and 24 h of incubation. Both caprylic acid and monocaprylin reduced all 5 pathogens by >5.0 log cfu/mL after 6 h of incubation. Among the bacterial species tested, Strep. agalactiae, Strep. dysgalactiae, and Strep. uberis were most sensitive, and E. coli was most tolerant to caprylic acid and monocaprylin. Results of this study indicate that caprylic acid and monocaprylin should be evaluated as alternatives or adjuncts to antibiotics as intra-mammary infusion to treat bovine mastitis.
Genomes of Salmonella enterica isolates, including those linked to outbreaks of produce-associated gastroenteritis, contain sdiA, which encodes a receptor of N-acyl homoserine lactones (AHL). AHL are the quorum-sensing signals used by bacteria to coordinately regulate gene expression within -their populations. Because S. enterica does not produce its own AHL, SdiA is hypothesized to function in the interspecies cross-talk with AHL-producing bacteria. Under laboratory conditions, S. enterica responded to AHL from phytobacteria by upregulating expression of srgE. AHL-dependent expression of srgE required a functional sdiA. Essentially, no sdiA-dependent resolution of the srgE recombinase-based (RIVET) reporter was observed inside a soft rot formed on a tomato by an AHL-producing strain of Pectobacterium carotovorum. The results of the control experiments suggest that sdiA is not expressed inside tomato, pepper, green onion, or carrot affected by the soft rot, and the lack of sdiA expression in planta prevents Salmonella spp. from responding to AHL. Despite its inability to detect and respond to AHL during colonization of soft rots, S. enterica reached higher final cell numbers inside a tomato soft rot compared with its growth in intact tomato fruit. The synergistic effect was the strongest under the conditions that are typical for the Florida fall/winter production season.
Enterobacter sakazakii is an emerging pathogen that causes meningitis, bacteremia, sepsis, and necrotizing enterocolitis in neonates and children, with a mortality rate of 14%. Epidemiological studies have implicated dried infant formula as the principal source of the pathogen. Caprylic acid is a natural eight-carbon fatty acid present in breast milk and bovine milk and is approved as generally recognizable as safe by the U.S. Food and Drug Administration. The objective of this study was to determine the antibacterial effect of monocaprylin (monoglyceride ester of caprylic acid) on E. sakazakii in reconstituted infant formula. A five-strain mixture of E. sakazakii was inoculated into 10-ml samples of reconstituted infant formula (at 6.0 log CFU/ml) followed by 0, 25, or 50 mM (1%) monocaprylin. The samples were incubated at 37 or 23 degrees C for 0, 1, 6, and 24 h and at 8 or 4 degrees C for 0, 6, 24, and 48 h, and the surviving populations of E. sakazakii at each sampling time were counted. The treatments containing monocaprylin significantly reduced the population of E. sakazakii (P < 0.05) compared with the controls. Monocaprylin (50 mM) reduced the pathogen by >5 log CFU/ml by 1 h of incubation at 37 or 23 degrees C and by 24 h of incubation at 8 or 4 degrees C. Results indicate that monocaprylin could potentially be used to inactivate E. sakazakii in reconstituted infant formula; however, sensory studies are warranted before its use can be recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.